
From Code Refactoring to API Refactoring:
Agile Service Design and Evolution

Mirko Stocker and Olaf Zimmermann

University of Applied Sciences of Eastern Switzerland (OST), Oberseestrasse 10, 8640
Rapperswil, Switzerland

{mirko.stocker,olaf.zimmermann}@ost.ch

Abstract. Refactoring is an essential agile practice; microservices are
a currently trending implementation approach for service-oriented ar-
chitectures. While program-internal code refactoring is well established,
refactoring components on the architectural level has been researched
but not adopted widely in practice yet. Hence, refactoring service Appli-
cation Programming Interfaces (APIs) is not understood well to date. As
a consequence, practitioners struggle with the evolution of APIs exposed
by microservices. To overcome this problem, we propose to switch the
refactoring perspective from implementation to integration and study
how refactorings can be applied to the problem domain of agile service
API design and evolution. We start with an empirical analysis and as-
sessment of the state of the art and the practice. The contributions of
this paper then are: 1) presentation of results from a practitioner sur-
vey on API change and evolution, 2) definitions for a future practice of
API refactoring and 3) a candidate catalog of such API refactorings. We
discuss these contributions and propose a research action plan as well.

Keywords: Agile practices · Application programming interfaces · De-
sign patterns · Microservice architectures · Refactoring · Service evolu-
tion.

1 Introduction

Message-based remote Application Programming Interfaces (APIs) have become
an important feature of modern distributed software systems [32]. Software func-
tionality is increasingly provided not just through end-user facing applications,
but also via APIs. These allow mobile clients, Web applications, and third parties
to integrate API capabilities into their own applications and to combine different
APIs to address new use cases. Such API-based integration approaches impact
the software architectures and how these are developed and deployed: a growing
number of distributed services must work together and communicate [8,18]. In-
dependent of the technologies and protocols used, messages travel through one
or several APIs, placing high demands on quality aspects of the API implemen-
tation – in many application scenarios, API implementations have to be highly
available, reliable, responsive and scalable.

J. Barzen (Ed.). SummerSOC 2021, CCIS 1429. Springer Nature, 2021, pp. 174–193, 2021.
The final publication is available at Springer via https://doi.org/10.1007/978-3-030-87568-8 11.

https://doi.org/10.1007/978-3-030-87568-8_11


From Code Refactoring to API Refactoring 175

During the first phases of developing a new API, especially in agile devel-
opment, the focus is on implementing features (or even just a Minimum Viable
Product1, Walking Skeleton [7] or proof of concept). Questions about reliability,
performance and scalability might not have a high priority yet; information on
how the API will be used by clients is missing but required to make informed de-
cisions. One could just guess and try to anticipate how potential clients will use
the API, but that would not be prudent and violate agile values. For instance,
one related lean principle is to make decisions at the most responsible moment2.
Even if quality aspects of an API were to be highly ranked in the development
team’s priorities, the API implementation is likely to be created before any real
client is using it; so even if the developers wanted to, there would still be no way
to measure the actual usage and resulting quality characteristics.

Once the API is in production and receives real-world request traffic, quality
issues start to surface. An API that has been published and is used by clients
should not be changed ad hoc without carefully considering the positive and/or
negative implications. Different strategies exist to mitigate these risks; many of
these have been documented as design patterns [15]. For example, an API can
use Semantic Versioning, so clients can compare versions of an API. The Two
in Production pattern shows how multiple versions of an API can be provided
so that clients can gradually switch to a new version.

Refactoring is a technique for improving the structure of a software sys-
tem without changing its external/observable behavior [6] – typical concerns are
maintainability and readability of the source code. The purpose of a refactoring
can also be the alignment of the software with a design pattern [10]. Architec-
tural refactorings [21] aim at improving the future evolvability of the software
on the architecture level. Such coarser-grained refactorings “improve at least one
quality attribute without changing the scope and functionality of the system”
[28].

In this context, this paper presents the results of a practitioner survey that
aims at understanding the reasons that force software architects and API devel-
opers to change an API and also the consequences of such changes. The survey
addresses the following knowledge questions:

– Q1: What causes API changes?
– Q2: How often are quality issues the cause of an API change?
– Q3: How do architects and developers mitigate the found issues?

Taking the survey results into account, our second contribution is to propose
a new form of refactoring – API Refactoring – to evolve APIs towards patterns:

Improve quality aspects of message-based remote APIs by offering refactoring
and continuous API evolution practices, including actionable step-by-step

instructions to help API architects and developers mitigate quality issues and
evolve their APIs rapidly and reliably.

1 http://www.syncdev.com/minimum-viable-product/
2 http://wirfs-brock.com/blog/2011/01/18/agile-architecture-myths-2-architecture-

decisions-should-be-made-at-the-last-responsible-moment/

http://www.syncdev.com/minimum-viable-product/
http://wirfs-brock.com/blog/2011/01/18/agile-architecture-myths-2-architecture-decisions-should-be-made-at-the-last-responsible-moment/
http://wirfs-brock.com/blog/2011/01/18/agile-architecture-myths-2-architecture-decisions-should-be-made-at-the-last-responsible-moment/


176 M. Stocker, O. Zimmermann

The remainder of the paper is structured as follows. Section 2 introduces
fundamental concepts and discusses the state of the art and the practice in
API refactoring. Section 3 describes the survey design, Section 4 its results.
Section 5 then proposes a definition of API refactoring and outlines a catalog
of candidate refactorings, targeting the survey participants’ wants and needs.
Section 6 critically reviews our approach and presents an action plan for further
research. Section 7 summarizes the paper and gives an outlook to future work.

2 Background/Context and Related Work

Microservice and API Domain Terminology. In a message-based remote
API, a message is sent to a receiver, which must then serve it (e.g., dispatch to
an object running inside it, or pass the message on to another receiver). The
dispatch/delegation policy and its implementation is hidden from the sender,
who can not make any assumptions about the receiver-side programming model
and service instance lifecycles. In contrast, remote procedure calls do not only
model remote service invocations, but also bind server-side subprogram runs to
the service instances they are invoked on; such instances (e.g., remote objects)
are visible across the network. While we deal with remote calls, we do not assume
that these remote calls are remote procedure calls. Message-based remoting ser-
vices can be realized in multiple technologies and platforms including RESTful
HTTP, Web services (WSDL/SOAP), WebSockets, and even gRPC (despite its
name). API calls come as HTTP methods operating on resources identified by
URIs and appearing in messages as resource representations. A service is a com-
ponent with a remote interface according to M. Fowler3; it exposes one or more
API endpoints (for instance, resources in RESTful HTTP APIs) which bundle
one or more operations (for instance, HTTP POST and GET operations) [32].

Gray Literature on API, Cloud Application and Service Design. Platform-
specific design heuristics for designing highly available and reliable applications
include the Amazon Web Services (AWS) Well-Architected Framework4 or the
Microsoft Azure Well-Architected Framework5. Such heuristics and guidelines
focus on architectural aspects that lead to applications that are well suited to
run in the respective clouds of these providers, but not on API implementation-
design aspects. They also do not cover the refactoring of existing applications.

Combining refactorings and patterns is discussed in [10], which defines refac-
toring to patterns as “[..] the marriage of refactoring [..] with patterns, the classic
solutions to recurring design problems. [..] We improve designs with patterns by
applying sequences of low-level design transformations, known as refactorings.”
In our context, APIs can be refactored to align more closely with specific pat-
terns, or to switch between pattern alternatives that have similar forces but
different consequences.

3 https://martinfowler.com/articles/injection.html
4 https://aws.amazon.com/architecture/well-architected
5 https://docs.microsoft.com/en-us/azure/architecture/framework

https://martinfowler.com/articles/injection.html
https://aws.amazon.com/architecture/well-architected
https://docs.microsoft.com/en-us/azure/architecture/framework/


From Code Refactoring to API Refactoring 177

Academic Publications on API Design and Evolution. API design and
evolution concern rather different stakeholders; therefore, we find related work
in different research communities, including enterprise computing, software ar-
chitecture, software evolution and maintenance, and service-oriented computing.

It has been researched how Web service API evolution affects clients; the
challenges to be overcome include dealing with newly added rate limits [22]
or changes in authentication and authorization rules [14]. This study classifies
change patterns as refactorings and non-refactorings and that “web API evolves
in limited patterns” and concludes that “a tool addressing all these patterns
could potentially automate the migration of clients”. Similarly, [24] identified
and categorized API changes and how developers react to these changes by
analyzing discussions on StackOverflow6, a Q&A website for developers.

The refactoring of local, program-internal APIs and the role of such refac-
torings during software evolution and maintenance has been well researched em-
pirically [4,3,5,12]; to the best of our knowledge, the refactoring and evolution
of remote APIs, however, has not been investigated much yet. Design principles,
architectural smells and refactorings for microservices are covered in a multifocal
review [17]. Another publication show how applications can be split into services
and how local interfaces can be transferred into remote ones [13].

Quality of service aspects of services has been the focus of several studies
[16,20,26]. Other research has focused on operational qualities [1]. For instance,
we presented a decision model for guiding architectural decisions on quality
aspects in microservice APIs in our previous work [25].

3 Research Method

We initiated our empirical research with a survey among software engineering
professionals involved in the design, implementation and maintenance of APIs
to understand the reasons for API changes and the approaches chosen during
API evolution. In this section, we summarize the survey design; our findings will
then be discussed in Section 4.

Figure 1 shows the workflow during survey design. We chose Microsoft Forms
as our survey tool because it provides suitable types of questions (multiple-choice
with choices in random order; free-text; Likert scale) and privacy policy7.

The questionnaire comprises 17 questions, organized into two parts. The
first part contains questions about the context of the API and the technologies
used; we asked participants that are involved in several projects to consider
their overall experience when answering the questions. The second part of the
survey focuses on the forces that drive API changes. We use different types of
questions: single- and multiple-choice questions, with a free-form other option
for additional answers where it makes sense. For questions where there was no
natural ordering of the answers, the answers appeared in a random order. For

6 https://stackoverflow.com/
7 https://www.microsoft.com/en-us/servicesagreement/default.aspx

https://stackoverflow.com/
https://www.microsoft.com/en-us/servicesagreement/default.aspx


178 M. Stocker, O. Zimmermann

Fig. 1. We designed the questionnaire iteratively: a team-internal brainstorming led to
an initial set of questions, which we discussed and refined internally. The first draft of
the questionnaire was then sent to several domain experts acting as external reviewers,
which provided feedback on the wording of the questions and answering options. A
pilot among selected members of the target audience provided further feedback.

rating questions we used a five-point Likert scale (Never, Rarely, Sometimes,
Often, Very Often).

Figure 2 lists the survey questions. We distributed the questionnaire through
social media (Twitter, LinkedIn) and via e-mail to our personal networks of
professional contacts, asking these contacts to fill out the survey themselves, but
also to further distribute the questionnaire within their own networks.

4 Findings

At the time of this writing, we have received 64 completed questionnaires. In
this section, we will first look at the usage context and used technologies of the
APIs and then begin to answer our research questions with the responses to the
second part of the survey.

API Usage Context and Technologies. The first part of the questionnaire
aims at understanding the context in which the respondents’ APIs are employed
and the technologies used. While these responses do not directly contribute to an-
swering our research questions, we can incorporate the articulated programming-
or specification languages and other preferences when crafting solutions, exam-
ples, etc., as discussed in Section 6. Of our respondents, 64% have both internal
and external clients, 31% have only internal and a mere 4% have just external
clients. The numbers of users accessing the API are surprisingly large, with 54%
of respondents stating that the API has more than 100 individual end users.
The respondents’ code bases vary between less than 10k lines of source code up
to more than a million lines, with the majority in the 10k to 100k range. Asked



From Code Refactoring to API Refactoring 179

Fig. 2. The survey questionnaire comprises 17 questions, organized into two parts. See
https://forms.office.com/r/R0UjvPHALE for the complete questionnaire.

https://forms.office.com/r/R0UjvPHALE


180 M. Stocker, O. Zimmermann

about the relationship between the API provider and the API client developers,
57% work together with the clients when changing the API.

We also asked participants about their usage of specification (interface defini-
tion) languages and message exchange technologies. The most used specification
language is OpenAPI / Swagger (see Figure 3). OpenAPI specification can either
be written first and code then generated from it; alternatively, the specification
can be generated from annotated program code. Both approaches are common
among our respondents, as Figure 4 shows. The last question in this part of the
questionnaire asked about the technologies that are used to exchange messages.
As can be seen in Figure 5, both RESTful and plain HTTP are in the lead,
which fits the top response for specification languages.

0 10 20 30 40
Number of responses

Open API / Swagger

JSON API

Protocol Buffers

WSDL

Fig. 3. Which specification or interface definition languages, if any, are you using?
– Individually mentioned were Apollo, AsyncAPI, GraphQL, RAML, Apache Avro,
XMI/UML, Markdown and “plain text documents without a structured format”. Not
surprisingly, OpenAPI / Swagger came out on top, but older languages such as WSDL
are still in use as well.

0 5 10 15 20 25 30
Number of responses

Specification (contract) first, for instance in a modeling tool
Code first, specification created from code

Code first, no specification created
Code first, specification created manually

Specification and code generated from intermediary
Depends heavily on the technology.

Fig. 4. Do you develop the API specification first, or do you write the code first and
then let tools or frameworks create the specification? Overall, the two approaches
appear to be equally common.

API Change Drivers. The second part of the questionnaire focuses on the
forces that drive API changes and the mitigation tactics applied. To answer our



From Code Refactoring to API Refactoring 181

0 5 10 15 20 25 30 35 40
Number of responses

RESTful HTTP including HATEOAS

Plain (not necessarily RESTful) HTTP

GraphQL

gRPC

SOAP

Fig. 5. Which of the following message exchange technologies do you use? – Singular
responses were RabbitMQ, Server-Sent Events, Kafka and Java RMI. We were surprised
by the high number of “RESTful HTTP including HATEOAS” responses, which seem
to contradict earlier empirical observations [19].

first research question – What causes API changes? – we asked participants
about the causes leading to an API change. As shown in Figure 6, modifications
to APIs are most often caused by changed functional requirements, driven by
the client or the provider (represented by the first two entries in the figure),
whereas non-functional issues were occasionally the cause for a change as well.

The answers to our next question confirms this, as can be seen in Figure 7. Al-
though functional changes are the main driver behind API changes, quality issues
do occur and also result in API changes. Asked about which quality attributes
were lacking (Figure 8), two of them stand out: usability and maintainability,
followed by performance and scalability.

Change and Mitigation Tactics. When asked to select all actions they per-
form when changing an API, the top two answers were – unsurprisingly – “update
specification or code” and “update API documentation” (see Figure 9). 59% of
the respondents also said that they adjust the API version number, and almost
half (43%) also adjust the API clients. These are two important findings for our
next steps in designing API refactorings. Backwards compatibility seems to be
an important consideration, as can be seen in the answers to our question about
the handling of backwards compatibility shown in Figure 10.

As we saw above, quality issues in APIs do lead to changes, but lack of
resources and other priorities also cause developers not to go through with a
change. Figure 11 shows the main reasons for deciding against fixing quality
issues. With the results from our survey, we can now attempt to find an answer
to our initial questions:

– Q1: What causes API changes? The main reason for API changes is the
introduction of new features, i.e., the provider drives the change. Client-
driven changes are also common, but slightly less so.

– Q2: How often are quality issues the cause of an API change? Quality issues
are common, but not the main driver of API changes. Usability, performance,
and maintainability are the most common causes that led to API changes.



182 M. Stocker, O. Zimmermann

Fig. 6. What were causes for API changes on your current/past projects? The first
two scales show that changed functional requirements are most often the cause that
lead to API changes.

Fig. 7. How often were quality issues the reason for an API change, as opposed to
functional changes? The answers reveal a very similar picture to the previous question
reported in Figure 6.



From Code Refactoring to API Refactoring 183

Fig. 8. Which quality attributes were lacking and led to an API change? Usability and
maintainability stand out, followed by performance and scalability.

0 10 20 30 40 50
Number of responses

Update specification or code
Update API documentation

Adjust existing tests *after* doing the change 
Increase API version number

Search for best practices, patterns, literature
Adjust the API clients

Update architectural decision records
Adjust existing tests *before* doing the change

 Perform or repeat security assessment
Measure the implications of the change using performance/load tests 

Fig. 9. Which of the following activities do you perform when making changes to an
API? The approach to testing seems to differ among respondents: most update their
tests after performing a change, suggesting that test-driven development is not used.



184 M. Stocker, O. Zimmermann

0 10 20 30
Number of responses

The API is versioned explicitly.

We take care to be backwards compatible, even if this 
causes additional efforts in the implementation.

We run several versions of the API in production.

We take care to be backwards compatible, but only if this 
does not cause additional efforts in the implementation.

Our API is declared as an experimental technology preview, and we expect 
 clients to be able to deal with frequent breaking changes on short notice.

Fig. 10. How do you handle backwards compatibility? Most respondents version their
API and try to keep backwards compatibility, accepting additional implementation
efforts. Individual responses mentioned working with internal clients on the migration,
using technologies that support deprecation of parameters or not supporting backwards
compatibility at all.

– Q3: How do architects and developers mitigate the found issues? We gained
some insights into the steps taken, especially on backwards compatibility,
where versioning of the API is common. Apart from that, we were not able
to answer this question in detail. Follow-up research will be required (e.g.,
case studies).

0 5 10 15 20 25 30
Number of responses

We had other priorities or were lacking resources.

Technical risk was too high, cost/benefit ratio did not justify the move sufficiently.

Clients would have had to be adjusted, and this was not an option.

Instead of fixing the API, we just increased the processing resources/added caching.

The API backend was not capable of realizing the required changes (in time, or at all).

No alternate solution was known to us that would have fixed the problem.

 We were not sure how to approach the change, for instance which steps to take.

Intended to end-of-life the API in the short-mid term

Clients were provided newer micro-APIs as alternatives to switch to

Original development team gone or unavailable

Fig. 11. Have you ever decided against changing an API even though there were quality
issues? If so, why? Differing priorities and lack of resources were mentioned as common
reasons for not changing an API, followed by the inability to also adjust clients.

The answers to Question 3 deliver candidate refactorings, the answers to
Questions 1 and 2 the corresponding smells. Grounding our upcoming research
in the survey results – also regarding the respondents’ usage of specification lan-
guages and message exchange technologies – will increase the chances of getting
accepted by developers in practice.



From Code Refactoring to API Refactoring 185

5 Towards API Refactoring

Our survey shows that quality issues in APIs do occur and lead to API changes.
One technique to improve non-functional aspects of a software system is refac-
toring. In this section, we will first review existing types of refactoring and then
propose a definition of API refactoring. A draft catalog of candidate API refac-
torings with scope and smell-resolution pairs derived from the survey results as
well as additional input concludes the section.

Definition of Code Refactoring. Fowler defines refactoring as “a change
made to the internal structure of software to make it easier to understand and
cheaper to modify without changing its observable behavior” [6]. An example
of an everyday refactoring is the renaming of a local variable to improve the
readability of the code. Not all code cleanup, such as formatting, falls under the
umbrella of refactoring, and neither do changes to the software that add new
features or fix bugs.

A refactoring is performed as a series of small steps that always keeps the
software in a functioning state, and should be accompanied by a comprehensive
suite of tests. For example, when moving a method between classes, a forwarding
method that delegates calls from the original to the new class can be kept so
that callers of the method can be migrated individually.

Refactoring is an essential agile practice: it is one of the extreme programming
[2] practices, but also essential in test-driven development as part of the Red-
Green-Refactor8 cycle of development.

Definition of Architecture/Architectural Refactoring. The principles
of refactoring can not only be applied to code-level software changes, but also on
an architectural level. For instance, Stal defines software architecture refactor-
ing that “improves the architectural structure of a system without changing its
intended semantics” [21]. By only ruling out changes to intended semantics, and
not the more strict observable behavior, an architectural refactoring allows more
radical changes to a software. Zimmermann views Architecture Refactoring as
“a coordinated set of deliberate architectural activities that remove a particular
architectural smell and improve at least one quality attribute without changing
the system’s scope and functionality” [27].

An example of an architectural refactoring is the splitting of a monolithic
system into several (micro-) services [29]. For example, an e-commerce software
could be split into distinct product discovery and order checkout systems. The
intended semantics of the overall software stays the same, but the new architec-
ture might allow the individual development teams greater velocity.9.

8 http://www.jamesshore.com/v2/blog/2005/red-green-refactor
9 One might argue that this violates the original definition of refactoring because the

observable behavior is clearly and deliberately changed. In the refactoring exam-
ple given earlier, a local variable is renamed, making it unlikely that the observ-
able behavior of the software changes. But refactorings involving multiple classes,
for example moving a method from one class to another, change the interfaces of
these classes – possibly including public ones – in a backwards-incompatible man-

http://www.jamesshore.com/v2/blog/2005/red-green-refactor


186 M. Stocker, O. Zimmermann

Proposed Definition of API Refactoring. Due to its hybrid character,
we can define API refactoring starting from the above two definitions:

An API refactoring evolves the remote interface of a system without changing
its feature set and semantics to improve at least one quality attribute.

API refactoring can be seen as a variant of architectural refactoring – inter-
faces and their implementations in components are architectural elements – with
a focus on controlled evolution. In contrast to code refactorings, an API refac-
toring can affect the API behavior as observed by clients. The semantics of a
specific operation might be changed in a refactoring, but not the overall feature
set and semantics of the API. Operating on the boundaries of a system, API
providers require an explicit evolution strategy to communicate API changes to
clients and manage their expectations. Finally, the goal of an API refactoring is
the improvement of at least one quality attribute (e.g., as mentioned in the sur-
vey: usability, performance, maintainability) and not to be able to introduce new
features or fix bugs more efficiently. Figure 12 compares the different refactoring
styles.

Fig. 12. Types of refactorings by scope and stakeholder concerns, according to [6,28]
and our own analysis.

Let us consider a concrete application of an API refactoring in the follow-
ing scenario (capitalized pattern names are from the Microservices API Patterns
language10): You are a developer at Lakeside Mutual, a fictitious insurance com-
pany, responsible for the Policy-Management-Backend microservice. The service

ner. Whether this constitutes observable behavior depends on the viewpoint and
expectations of the observer: an API client developer might notice and be directly
affected by the change, but not the end user of the software. It has been shown that
behavior-changing modifications still qualify as refactorings[11]

10 https://www.microservice-api-patterns.org, also see [33,22,15,30,31]

https://www.microservice-api-patterns.org


From Code Refactoring to API Refactoring 187

Fig. 13. The endpoint returns a representation of the requested policy. The re-
sponse contains a reference to a customerId Linked Information Holder. See
www.microservice-api-patterns.org for more information on the patterns and icons.

Fig. 14. The customer data can be retrieved by using the customerId in a follow-up
request to its Master Data Holder endpoint.

https://www.microservice-api-patterns.org


188 M. Stocker, O. Zimmermann

Fig. 15. Applying the Inline Information Holder refactoring, the Linked Information
Holder can be replaced with an Embedded Entity.

offers an HTTP endpoint to read insurance policy data, as shown in Figure 13.
After the API has been put into production, a performance analysis makes evi-
dent that the majority of clients first requests data from the policy endpoint, but
then also retrieves the corresponding master data from the customer endpoint
(see Figure 14). By inlining the Information Holder Resource and refactoring to
the Embedded Entity pattern, the linked data is now available inside the initial
response message, saving clients the additional request and avoiding underfetch-
ing. Figure 15 shows the resulting response structure. While the consequences
of applying this refactoring are beneficial for some clients, those not requiring
the additional data now face increased message sizes and transfer times. The
processing and database retrieval effort in the endpoint increases as well. Al-
ternative patterns that the API can be refactored to are Wish List and Wish
Template [32]. These two patterns let the client inform the provider about its
data interests.

Draft Catalog of Candidate Refactorings. The survey results unveil a
few quality concerns that can be addressed with API refactorings, for instance
in the area of performance. Also taking our previous work [17] into account and
reflecting on our own industry projects and action research, we have collected
the following list of candidate refactorings for further elaboration11:

– Inline Information Holder: Reduce indirection by directly embedding refer-
enced information holder resources. Figure 16 details this refactoring in a
table format adapted from [27].

11 At https://interface-refactoring.github.io we have started to publish these refactor-
ings; names and content of the refactoring are subject to change.

https://interface-refactoring.github.io/


From Code Refactoring to API Refactoring 189

– Extract Information Holder: Decrease message size by replacing embedded
entities with linked information holders.

– Introduce Payload Feature Toggle: Lessen the mismatch between client expec-
tations and provider capabilities by letting the client decide on the response
message content.

– Introduce Pagination: Reduce response data set size by dividing large data
sets into chunks.

– Collapse Operations: Enhance discoverability by reducing the number of
distinct operations.

– Move Operation: Improve cohesion by shifting an operation from one end-
point to another.

– Rename Endpoint: Increase developer usability by making the name of an
endpoint more expressive and accurate.

– Split Endpoint: Move one or more operations to a new endpoint so that
coupling between the operations in an endpoint is reduced.

– Merge Endpoints: Collapse two endpoints that are tightly coupled.

Note that we articulate the candidate refactorings in the API design vocabu-
lary we established in previous work [32]. This wording differs substantially form
that used in the survey reported on in the Sections 3 and 4 of this paper. We
avoided our own pattern terminology as much as possible in the survey to avoid
or reduce bias; more specifically, we did not want to steer participants towards
desired responses.

When answering research Question 2 in the survey in Section 4, usability,
performance, scalability and maintainability were reported as the most common
causes that led to API changes (see Figure 8). Inline Information Holder and
Rename Endpoint can improve usability, while Extract Information Holder aims
at improving performance and scalability. Introduce Payload Feature Toggle and
Introduce Pagination also aim at improving these two qualities, but can have
a negative impact on maintainability. The remaining candidates address high
cohesion and low coupling, general API design principles that did not come out
of the survey (it is worth noting that we did not ask about them explicitly). See
Figure 17 for a mapping of causes of API changes to suggested refactorings.

6 Discussion of Preliminary Results and Action Plan

Pros and Cons. API refactoring is a new (some might say yet another) prac-
tice. It picks up another, commonly applied one to reduce the learning effort.
A related risk is that a different intuitive understanding, that of code refactor-
ing, might cause undesired irritation. The community might argue about the
criteria for inclusion/exclusion of refactorings in the catalog: does it claim to be
complete? To mitigate this effect we started from the survey results and applied
the “rule of three” from the patterns community12. Just like code refactoring

12 Only include a pattern if there are at least three known uses. Not to be confused
with the “rule of three” of refactoring [6] duplicated pieces of code, where it refers
to the number of duplicates starting from which a refactoring is recommended.



190 M. Stocker, O. Zimmermann

Fig. 16. The Inline Information Holder refactoring reduces indirection by directly em-
bedding an entity instead of indirectly referencing it with a link.

Fig. 17. Suggested refactorings for different causes of API changes. Causes for which
refactoring is not the right technique – i.e., those where features are added – are marked
with N/A. For technological changes, an architectural refactoring might be applicable.



From Code Refactoring to API Refactoring 191

requires unit testing, API refactoring requires automated API testing so that
it can be practiced safely. Tests should ensure that an API refactoring does
not accidentally change the request- or response message structures, endpoints
or other API elements. Such tests likely have to cover multiple API calls that
jointly deliver a particular integration functionality or API feature.

Threats to Validity (of Research Results). When designing the ques-
tionnaire, conducting the survey, and analyzing the results, we applied general
guidelines for survey design [9]. Several threats to the validity of our results re-
main. The questionnaire was distributed by e-mail and social media, which is
not representative of the overall population. While we did state in the invitation
to the survey and also in the introduction of the questionnaire that we target
“software architects, engineers and technical product owners that specify, imple-
ment and maintain message-based remote APIs”, we cannot rule out that some
participants did not fulfill these requirements. Moreover, targeting a particular
industry or domain could lead to different responses, especially regarding tech-
nologies used. Nevertheless, the results show that an API refactoring practice
would be valuable to practitioners.

Action Plan. The next step in this research are a) gather even more and
deeper practitioner knowledge by continuing the analysis, b) describe all refac-
torings already identified and backed by the survey results in a template similar
to that behind Figure 16, c) implement tool support for selected ones in editors
for API description languages (motivated by the survey results in Figures 3 and
4), and d) validate the usability and usefulness of refactoring catalog and tools
empirically (via action research, case studies, and controlled experiments).

The website interface-refactoring.github.io features our emerging API refac-
toring catalog (i.e., the results of action plan item b).

7 Summary and Outlook

Refactorings offer step-by-step instructions on how to evolve a software system
systematically. Combining the agile practice of refactoring with API patterns
can help to adapt (micro-)service APIs to changing client demands and quality
requirements. Our practitioner survey on API change and evolution motivated
the potential use of such a refactoring practice. Taking additional feedback into
account, we plan to complete and extend our emerging refactoring catalog and
have started to implement tool support for selected high-value refactorings.

A related open research problem is how architectural principles, both general
ones such as loose coupling and interface-specific ones such as POINT13 relate
to refactoring. On the one hand, frequent refactoring of continuously evolving
architectures can be seen as a principle in itself. On the other hand, violations of
other principles may yield API smells suggesting refactorings as well, similar to
code/design smells [23]; for instance, if two API operations violate the I solated
principle in POINT, it might make sense to merge them into one.

13 www.ozimmer.ch/practices/2021/03/05/POINTPrinciplesForAPIDesign.html

https://interface-refactoring.github.io/
https://www.ozimmer.ch/practices/2021/03/05/POINTPrinciplesForAPIDesign.html


192 M. Stocker, O. Zimmermann

Another idea for future work is that of smart proxies that mediate between
old and new versions of an API in case backward compatibility cannot be assured.
Finally, the relation between API refactoring and API testing has to be studied
and strengthened.

Acknowledgments

We would like to thank all reviewers and participants of the survey. The work
of Mirko Stocker and Olaf Zimmermann is supported by the Hasler Foundation
through grant nr. 21004.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables de-
vops: Migration to a cloud-native architecture. IEEE Software 33(3), 42–52 (2016)

2. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional, Boston (2004)

3. Cossette, B.E., Walker, R.J.: Seeking the ground truth: A retroactive study on the
evolution and migration of software libraries. In: Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software Engineering.
FSE ’12, Association for Computing Machinery, New York, NY, USA (2012)

4. Dig, D., Johnson, R.: The role of refactorings in api evolution. In: 21st IEEE
International Conference on Software Maintenance (ICSM’05). pp. 389–398 (2005)

5. Dig, D., Johnson, R.: How do apis evolve? a story of refactoring: Research articles.
J. Softw. Maint. Evol. 18(2), 83–107 (Mar 2006)

6. Fowler, M.: Refactoring. Addison-Wesley Signature Series (Fowler), Addison-
Wesley, Boston, MA, 2 edn. (2018)

7. Hunt, A., Thomas, D.: The Pragmatic programmer : from journeyman to master.
Addison-Wesley, Boston [etc.] (2000)

8. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices: The
journey so far and challenges ahead. IEEE Software 35(03), 24–35 (may 2018)

9. Kasunic, M.: Designing an Effective Survey. Software Engineering Institute (9 2005)
10. Kerievsky, J.: Refactoring to Patterns. Pearson Higher Education (2004)
11. Kim, M., Zimmermann, T., Nagappan, N.: A field study of refactoring challenges

and benefits. In: Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering. FSE ’12, Association for Computing
Machinery, New York, NY, USA (2012)

12. Kula, R.G., Ouni, A., German, D.M., Inoue, K.: An empirical study on the impact
of refactoring activities on evolving client-used apis. Information and Software
Technology 93, 186–199 (2018)

13. Kwon, Y.W., Tilevich, E.: Cloud refactoring: Automated transitioning to cloud-
based services. Automated Software Engg. 21(3), 345–372 (Sep 2014)

14. Li, J., Xiong, Y., Liu, X., Zhang, L.: How does web service api evolution affect
clients? In: 2013 IEEE 20th International Conference on Web Services. pp. 300–
307 (2013)

15. Lübke, D., Zimmermann, O., Stocker, M., Pautasso, C., Zdun, U.: Interface evolu-
tion patterns - balancing compatibility and extensibility across service life cycles.
In: Proceedings of the 24th EuroPLoP conference. EuroPLoP ’19 (2019)



From Code Refactoring to API Refactoring 193

16. Menascé, D.A.: Qos issues in web services. IEEE internet computing 6(6), 72–75
(2002)

17. Neri, D., Soldani, J., Zimmermann, O., Brogi, A.: Design principles, architec-
tural smells and refactorings for microservices: a multivocal review. SICS Softw.-
Intensive Cyber Phys. Syst. 35(1), 3–15 (2020)

18. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.M.: Microser-
vices in practice, part 2: Service integration and sustainability. IEEE Software
34(2), 97–104 (2017)

19. Rodŕıguez, C., Baez, M., Daniel, F., Casati, F., Trabucco, J.C., Canali, L., Per-
cannella, G.: Rest apis: A large-scale analysis of compliance with principles and
best practices. In: Web Engineering. pp. 21–39. Springer International Publishing,
Cham (2016)

20. Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An end-to-
end approach for qos-aware service composition. In: IEEE Int. Conf. on Enterprise
Distributed Object Computing Conference (EDOC’09). pp. 151–160. IEEE (2009)

21. Stal, M.: Agile Software Architecture. Morgan Kaufmann (12 2013)
22. Stocker, M., Zimmermann, O., Lübke, D., Zdun, U., Pautasso, C.: Interface quality

patterns - communicating and improving the quality of microservices APIs. In:
Proceedings of the 23nd EuroPLoP conference. EuroPLoP ’18 (2018)

23. Suryanarayana, G., Sharma, T., Samarthyam, G.: Software process versus design
quality: Tug of war? IEEE Software 32(4), 7–11 (2015)

24. Wang, S., Keivanloo, I., Zou, Y.: How do developers react to restful api evolu-
tion? In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) Service-Oriented
Computing. pp. 245–259. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

25. Zdun, U., Stocker, M., Zimmermann, O., Pautasso, C., Lübke, D.: Guiding ar-
chitectural decision making on quality aspects in microservice APIs. In: 16th In-
ternational Conference on Service-Oriented Computing ICSOC 2018. pp. 78–89
(November 2018)

26. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: Proceedings of the 12th international conference on
World Wide Web. pp. 411–421. ACM (2003)

27. Zimmermann, O.: Architectural refactoring: A task-centric view on software evo-
lution. IEEE Software 32(2), 26–29 (Mar-Apr 2015)

28. Zimmermann, O.: Architectural refactoring for the cloud: Decision-centric view on
cloud migration. Computing 99(2), 129–145 (2017)

29. Zimmermann, O.: Microservices tenets. Comput. Sci. 32(3-4), 301–310 (Jul 2017)
30. Zimmermann, O., Lübke, D., Zdun, U., Pautasso, C., Stocker, M.: Interface re-

sponsibility patterns: Processing resources and operation responsibilities. In: Pro-
ceedings of the 25th EuroPLoP conference. EuroPLoP ’20 (2020)

31. Zimmermann, O., Pautasso, Cesare Lübke, D., Zdun, U., , Stocker, M.: Data-
oriented interface responsibility patterns: Types of information holder resources.
In: Proceedings of the 25th EuroPLoP conference. EuroPLoP ’20 (2020)

32. Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C., Zdun, U.: Introduction to
Microservice API Patterns (MAP). In: Cruz-Filipe, L., Giallorenzo, S., Montesi,
F., Peressotti, M., Rademacher, F., Sachweh, S. (eds.) Joint Post-proceedings of
the First and Second International Conference on Microservices (Microservices
2017/2019). vol. 78, pp. 4:1–4:17 (2020)

33. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U.: Interface representation pat-
terns: Crafting and consuming message-based remote APIs. In: Proc. of the 22nd
EuroPLop. pp. 27:1–27:36. EuroPLoP ’17, ACM (2017)


	From Code Refactoring to API Refactoring: Agile Service Design and Evolution
	1 Introduction
	2 Background/Context and Related Work
	3 Research Method
	4 Findings
	5 Towards API Refactoring
	6 Discussion of Preliminary Results and Action Plan
	7 Summary and Outlook


