
API Refactoring to Patterns
Catalog, Template and Tools for Remote Interface Evolution

Mirko Stocker

Olaf Zimmermann

mirko.stocker@ost.ch

olaf.zimmermann@ost.ch

Eastern Switzerland University of Applied Sciences (OST)

Rapperswil, Switzerland

ABSTRACT

Refactoring is an essential agile practice for software evolution.

While program-internal code-level refactoring is well established,

architecture-level refactoring has been researched but not yet

widely adopted in practice. As a result, application programming

interface (API) refactoring is not well understood, and practition-

ers consequently struggle with the evolution of distributed sys-

tems using Web APIs and other remoting technologies. To fill this

knowledge gap, we propose to apply refactoring to the problem

of designing and developing adaptive APIs. This paper introduces

an Interface Refactoring Catalog (IRC) and presents eight of its

refactorings. IRC has been available online since 2021 and col-

lects 22 refactorings at present. Eleven of these patterns leverage

Patterns for API Design, originating from our previous work; the

remaining ones deal with the number and size of API endpoints

and their operations, cover renaming of these API building blocks

and message representation elements, and deal with architectural

change.

CCS CONCEPTS

• Software and its engineering → Patterns; Designing software.

KEYWORDS

application programming interface, cloud computing, design pat-

terns, enterprise application integration, refactoring

ACM Reference Format:

Mirko Stocker and Olaf Zimmermann. 2023. API Refactoring to Patterns:

Catalog, Template and Tools for Remote Interface Evolution. In 28th Eu-
ropean Conference on Pattern Languages of Programs (EuroPLoP 2023), July
05–09, 2023, Irsee, Germany. ACM, New York, NY, USA, 32 pages. https:

//doi.org/10.1145/3628034.3628073

1 INTRODUCTION

Refactoring is the practice of improving a software system without

changing its external/observable behavior, such as making sure

that names are well chosen or breaking a long sequence of code

into several parts. Refactoring may as well align the software with

This work is licensed under a Creative Commons Attribution-NoDerivs International

4.0 License.

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0040-8/23/07.

https://doi.org/10.1145/3628034.3628073

a design pattern to improve its understandability [19]. Software

design patterns collect and distill proven solutions and “commu-

nicate wisdom and insight in computer/software systems design”

[23]. They follow a common template to address a specific problem

and discuss different forces and how they are resolved when ap-

plying the pattern solution in a context; known uses make validity

and applicability of each pattern evident. In this paper, we adopted

the pattern concept to describe and structure our refactorings in a

uniform template.

Many of the patterns that are the target to which we refactor are

described in our pattern language for microservice and remote API

design, first published in the EuroPLoP proceedings 2017 to 2020

[22, 36, 43, 44, 47] and finalized in “Patterns for API Design: Simpli-

fying Integration with Loosely Coupled Message Exchanges” [48].

Appendix A provides an overview of all our API design patterns

referenced in this paper. The initial inspirations for the current set

of API refactorings came from our work on these API design pat-

terns: for instance, patterns such as Embedded Entity and Linked

Information Holder provide alternative solutions for a problem

(here: management of nested, referenced data in the request and re-

sponse payload); this observation led to the identification of Extract
Information Holder and its inverse, Inline Information Holder . Other
inspiration came from literature like “Refactoring: Improving the

Design of Existing Code” by Fowler [12] and online resources such

as refactoring.guru that describe code-level refactorings that we pro-

jected to the API/architectural level. Earlier work on architectural

refactoring [42] and our own professional experience developing

software also contributed to the current version of our catalog. We

prototyped most of the refactorings in a tool and provide many

application examples as well.

We have collected a total of 22 refactorings so far and maintain

a backlog of additional candidates. Eight of these refactorings are

featured in this paper; the entire catalog is available at interface-

refactoring.github.io. Eleven of the refactorings in the catalog use

API design patterns as targets. In this paper, we present two refactor-

ings to API design patterns (AddWish List and Introduce Pagination),
four refactorings changing API structure and names (Introduce Data
Transfer Object, Split Operation, Merge Operation, Rename Represen-
tation Element), as well as two refactorings adding architectural

components (Segregate Commands from Queries and Introduce Ver-
sion Mediator) to ensure that the selection is representative of the

catalog without growing the paper to an excessive length. Note

that we use the terms API refactoring and interface refactoring

interchangeably.

https://doi.org/10.1145/3628034.3628073
https://doi.org/10.1145/3628034.3628073
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3628034.3628073
https://interface-refactoring.github.io/refactorings/extractinformationholder
https://interface-refactoring.github.io/refactorings/extractinformationholder
https://interface-refactoring.github.io/refactorings/inlineinformationholder
https://refactoring.guru/
https://interface-refactoring.github.io
https://interface-refactoring.github.io

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

API
API Refactorings:
• Tighten Evolution Strategy
• Relax Evolution Strategy

Endpoint

Address location
APIPattern role

Endpoint Refactorings:
• Rename Endpoint
• Merge Endpoints
• Segregate Commands from Queries

Communication Participant

API Client API Provider

Evolution Refactorings:
• Introduce Version Identifier
• Introduce Version Mediator

Operation

String name
APIPattern responsibility

Operation Refactorings:
• Extract Endpoint
• Move Operation
• Rename Operation
• Split Operation
• Merge Operations

Response Message Payload

KeyValuePairs protocolHeaders
RepresentationElements requestPayload

Message Refactorings 1/2:
• Introduce Data Transfer Object
• Extract Information Holder
• Inline Information Holder
• Introduce Pagination
• Rename Representation Element

Request Message Payload

KeyValuePairs protocolHeaders
RepresentationElements responsePayload

Message Refactorings 2/2:
• Add Wish List
• Add Wish Template
• Bundle Requests
• Make Request Conditional
• Externalize Context Representation

Figure 1: Refactorings by targeted API element; refactoring names in italics indicate the scope of this paper. Also see Table 1

that introduces the refactorings with a goal-statement expressed in the form of user stories.

Just like code-level refactorings affect different targets (e.g., vari-

ables, methods, or classes), API refactorings can also be performed

on different elements of an API. According to the API domain

model in [48], “an API is a collection of endpoints” that offer “oper-

ations” to “communication participants” (also called “API clients”

and “API providers” depending on their role in the communication).

API clients and API providers exchange structured request and

response messages. Figure 1 shows the targets of our refactorings.

Patterns are mined from known uses, whereas our refactorings

are derived from experience and literature. To give concrete usage

examples of how the refactorings affect the API implementation and

architecture, we are showing them in the context of the Lakeside

Mutual sample application. Lakeside Mutual is a fictitious insur-

ance company that serves as an example scenario to demonstrate

microservices [46] and domain-driven design [6]. We use it for

our teaching of bachelor-level lectures Application Architecture

[17] and Cloud Solutions; it also demonstrates many of the API

design patterns in Zimmermann et al. [48]. The application com-

prises several Spring Bootmicroservices that offer APIs to frontends.

Supporting Online Transaction Processing, these APIs expose op-

erations to create, read, update, and delete insurance policies as

well as product and customer master data; search capabilities are

provided as well. For example, the Customer Self-Service Frontend
single-page application uses two backend APIs to let insurance

customers manage their policies. Figure 2 provides an overview of

the microservices and frontends in the application scenario.

The remainder of this paper is structured in the following way.

Section 2 discusses related patterns and pattern languages. Section 3

gives an overview of our interface refactoring catalog and presents

the eight refactorings mentioned above. Section 4 discusses the

practical adoption of our refactorings in tools and practices. Section

5 summarizes and concludes the paper. Our layout conventions are

as follows: Refactorings are set in italics, whereas pattern names

are set in Small Caps. Links to additional information are printed

as footnotes for better readability, in print copies in particular.

2 RELATEDWORK

The design and refactoring of message-based remote APIs can ben-

efit from many existing patterns on various kinds of distributed sys-

tems, especially those related to services, as well as patterns related

to API design (e.g., API design in object-oriented programming)

and enterprise integration. Related research includes “Mapping

the Space of API Design Decisions” by Stylos and Myers [38]. API

usability redesign is the focus of a case study by Stylos et al. [37].

“WEBAPIK: A body of Structured Knowledge on Designing Web

APIs” by Sadi and Yu [29] presents design techniques to address

non-functional requirements in the design of Web APIs, such as

evolvability and performance. Refactoring helps to align an archi-

tecture with such non-functional requirements.

Fowler, author of “Refactoring: Improving the Design of Existing

Code” [12] andmaintainer of Refactoring.com defines refactoring as

“a disciplined technique for restructuring an existing body of code,

altering its internal structurewithout changing its external behavior.

Its heart is a series of small behavior-preserving transformations.”

“Refactoring to Patterns” by Kerievsky [19] describes improving a

system with pattern-directed refactorings. “Refactoring for Soft-

ware Design Smells” by Suryanarayana et al. [39] describes how to

apply refactorings to remove design smells. The Refactoring.Guru

website focuses on code refactorings. Some are API design-related;

the website also works with design smells. Fowler popularized code-

level refactoring, but the concept and the activity have a broader

appeal. Refactoring can also be applied to databases, as Ambler and

Sadalage [2] show in “Refactoring Databases: Evolutionary Data-

base Design.” Yoder and Merson [40] present “Strangler Patterns”

that can be used to evolve a monolith into microservices.

The Open Agile Architecture™ has an activity called “Contin-

uous Architectural Refactoring.” The importance of connecting

architecture-centric practices with agile ones, such as refactoring,

is identified by Hohpe et al. [17]. An emerging collection of Domain-

Driven Refactorings by Henning Schwentner includes tactical and

strategic refactorings in and around bounded contexts and socio-

technical refactorings to reorganize teams.

https://github.com/Microservice-API-Patterns/LakesideMutual
https://github.com/Microservice-API-Patterns/LakesideMutual
https://en.wikipedia.org/wiki/Online_transaction_processing
https://refactoring.com
https://refactoring.guru
https://pubs.opengroup.org/architecture/o-aa-standard/Continuous-Architectural-Refactoring.html
https://hschwentner.io/domain-driven-refactorings/
https://hschwentner.io/domain-driven-refactorings/

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

«Spring Boot»
Customer Core

«Spring Boot»
Customer Management Backend

«React»
Customer Management Frontend

«Spring Boot»
Customer Self-Service Backend

«React»
Customer Self-Service Frontend

«Spring Boot»
Policy Management Backend

«Vue.js»
Policy Management Frontend

«Node.js»
Risk Management Server

«Node.js»
Risk Management Client

«Spring Boot»
Spring Boot Admin

HTTPHTTPHTTP

HTTP + WebSocket HTTP + WebSocket HTTP HTTP HTTP gRPC

ActiveMQActiveMQ

HTTP HTTP HTTP

Figure 2: Lakeside Mutual components and their relationships

The Cloud Adoption Patterns website describes several “Cloud

Refactoring” steps to “minimally adapt an existing application to

work on the Cloud” without having to rewrite it. A Serverless

Land blog post by Hohpe and Pillai introduces “Refactoring to

Serverless” as “improve the design of your serverless application

by replacing application code with automation code, while using

the same programming language.”

In our previous work, we show how decision models can guide

API designers through their pattern selection process [41, 48]. We

defined the term “API refactoring,” reported on desired and missing

qualities, and outlined the catalog that this paper elaborates upon

in Stocker and Zimmermann [35]. We also implemented automated

refactoring tools for the Ruby and Scala programming languages

[4, 34]. Finally, we feature related practices for agile architecting

and service design in our “Design Practice Reference” [45].

3 THE INTERFACE REFACTORING CATALOG

(FIRST SLICE)

Our Interface Refactoring Catalog is a collection of API refactor-

ings and related architectural refactorings that impact the API of

a system. Stal [33] proposed architectural refactoring to improve

system-wide software evolvability. Architectural refactoring may

also target other quality attributes and non-functional requirements;

therefore, Zimmermann [42] defined Architectural Refactoring as

follows:

“. . . a coordinated set of deliberate architectural ac-

tivities that removes a particular architectural smell

and improves at least one quality attribute without

changing the scope and functionality of the system.”

In Stocker and Zimmermann [35], we then defined the term API
Refactoring. A slightly adapted version of this definition is:

An API refactoring evolves the remote interface of a

system or system component without changing the

feature set and semantics of the interface implementa-

tion to improve at least one quality attribute. Interface

clients may or may not have to be changed when this

evolution takes place.

One might argue that evolving an interface violates the “without

changing its external behavior” part of the code refactoring defini-

tion from Refactoring.com. However, we argue that it is a matter of

scope and boundaries and that we have to look at the entire system

and each message exchange, including the API provider and API

client. Let us consider a simple code refactoring example where

a local variable is renamed. It is highly unlikely that the external

behavior of the software will be affected after this change. But

refactorings that involve multiple classes, such as moving a method

from one class to another, change the interfaces of those classes –

possibly including public ones – in a backward incompatible way;

the code that uses the changed class part has to be changed as well.

Refactoring tools can fix the clients of those classes, but only if they

are known to the tool. If these classes are part of a library and are

exposed to unknown third parties, a refactoring tool won’t be able

to fix them automatically. Whether a refactoring at the interface

level changes external behavior depends on the perspective and ex-

pectations of the observer: an API client developer may notice and

be directly affected by the change caused by an API refactoring, but

the end user of the software may not. This is similar to refactoring

databases; when table structures change, the data access layer code

(e.g., JDBC and SQL) also changes, but other parts of the application

and its external behavior do not. We aim to ensure that refactorings

are backward-compatible if possible, and many refactorings can

indeed be applied without affecting the clients of an API (see the

“Backward Compatibility” column in Table 1).

The focus on improving quality attributes is also evident in the

template we propose to document API refactorings. Refactorings

start from an initial position sketch along with smells that a series
of instructions (steps) transforms into a target solution sketch. The
full refactoring template is shown in Appendix B. Fowler [12] uses

a template for code-level refactorings that describes them with a

name, solution sketch, motivation, mechanics, and examples. Our

template also covers these information elements. However, we

decided to structure the template further and add elements such

as stakeholder concerns (that make quality attributes explicit) and

design smells (that indicate problems with an existing solution).

While the refactorings captured in this template are not patterns

in the classical sense [15], they share many properties with software

https://kgb1001001.github.io/cloudadoptionpatterns/
https://serverlessland.com/refactoring-serverless/intro
https://serverlessland.com/refactoring-serverless/intro

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

design patterns: refactorings are applied in a specific context to

solve a particular problem. Different forces apply, requiring trade-

offs and decisions.

The refactoring activities are described in a technology-neutral

way for the most part, but their examples and implementation

hints mainly stem from HTTP resource API design and evolution.

Most examples are written in Java, using the Spring Framework,

and some use the Microservice Domain-Specific Language (MDSL).

MDSL is a domain-specific language that uses API design patterns

to describe APIs in a technology-independent way. Code genera-

tors are available to generate interface descriptions, for example

targeting OpenAPI. See [30] for an introduction to MDSL.

Table 1 outlines the eight refactorings in this paper that we will

present in the remainder of this section.

3.1 Refactoring: Introduce Data Transfer Object

also known as: Map andWrap Representation Structure, Ubiquitous

Language Wrapper

3.1.1 Context and Motivation. An API offers one or more opera-

tions that return Data Elements [48]. For example, the API of a

customer relationship management service might contain an end-

point that returns detailed information about customers and the

interactions with them. The structure of these responses might

have been derived from the API implementation classes and do-

main model data structures, with possibly deeply nested structures

of elements [31]. For example, an API implementation might use

an Object-Relational Mapper (ORM) to manage the data and might

return serializations of instances of the ORM classes in the response

messages.

As an API provider, I want to encapsulate my inter-
nal data structures so that I can freely change them
without breaking backward compatibility of my clients.
In domain-driven design terms, I want to keep the
integration-level published language separate from the
application-level ubiquitous language1.

3.1.2 Stakeholder Concerns (includingQuality Attributes and Design
Forces).

#modifiability, #evolvability, and #information-hiding

API providers want the freedom to change the API imple-

mentation without revealing such changes to clients. Such

information hiding [26] is crucial for the independent evolv-

ability of API providers and clients.

#developer-experience API clients want to navigate the re-

quired data with minimum effort, taking as few coding steps

(expressed as statements and expressions) as possible.

#cohesion, #coupling API providers strive for low coupling

and high cohesion in their endpoint, operation, and message

designs.

3.1.3 Initial Position Sketch. The refactoring is eligible for any

API operation that uses an implementation type (for example, a

domain class or a database-mapped entity) in a request or response

message. Note that this implementation type may also appear as a

subordinate element within a message structure hierarchy.

1
Ubiquitous Language is one of the core patterns in Domain Driven Design [6].

For instance, an API provider might return data from a repository

directly to the client, as shown in Figure 3. The structure and content

of the data are not changed; it is simply passed through.

3.1.4 Design Smells.

Leaky encapsulation Domain layer language constructs (e.g.,

classes) or abstractions defined in the persistence layer are

directly exposed in the API. Such permeable or even com-

pletely missing encapsulation of API internal data structures

makes an API harder to evolve because it introduces coupling

and harms backward compatibility.

Tight coupling of data contract Anything exposed will be

used according to Hyrum’s Law. Hence, leaky encapsulations

cause undesired coupling, which may slow development and

decrease modifiability and flexibility.

Confetti design Clients might have to issue many requests to

get all the needed data. Fine-grained APIs that rain many

small Data Elements on clients are rather flexible but can

be tedious to use.

3.1.5 Instructions (Steps). To replace an implementation type in a

response message with a DTO, perform the following steps:

1. Create a new data-centric wrapper (e.g., a class in object-

oriented languages) that mirrors the attributes of the current

message representation. Such Data Transfer Objects (DTOs)
[11] are typically implemented as immutable Value Objects

[6] with structural, value-based equality.

2. Depending on the implementation framework, add addi-

tional serialization logic or mapping configuration informa-

tion. An example is the JSON-to-Java data binding offered

by libraries such as Jackson.

3. Write unit tests for the DTOs and the mapping logic. If the

framework generates the code, such tests might be unneces-

sary (or already provided by the framework).

4. Adjust the implementation of the operation to create an

instance of the DTO and fill it with the necessary data.

5. Return the DTO from the operation implementation, adjust-

ing any return types if necessary (so that the new serializa-

tion logic can pick them up).

6. Run the tests to ensure the message structure was not

changed accidentally. For example, an integration test might

check whether all attributes expected in a JSON object are

present.

7. Include the API change in the API Description if it is visi-

ble there; for example, adjust the JSON-Schema part of the

OpenAPI description of the API.

8. Align the sample data in supplemental API documentation

artifacts such as tutorials so that it the new structure is

featured.

These instructions assume that the DTO is introduced in a re-

sponse message. If a request message is the target, steps 4 and 5

must be adapted. Instead of creating and returning a DTO, adjust

the implementation of the operation to take the DTO as a parameter

and convert it back to the API-internal data representation. This

refactoring is fully backward-compatible because it only changes

the implementation, not the structure of the message.

https://microservice-api-patterns.github.io/MDSL-Specification/index
https://en.wikipedia.org/wiki/Object-relational_mapping
https://www.hyrumslaw.com/
https://github.com/FasterXML/jackson-databind

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Refactoring Goal Expressed as a User Story Backward Compatibility

Introduce Data Transfer Object (p. 4) As an API provider, I want to encapsulate my internal data struc-

tures so that I can freely change them without breaking backward

compatibility of my clients.

Yes, this is an implementa-

tion level change and does

not affect the API contract

Add Wish List (p. 7) As an API client, I want exact control over response message content

so that I receive just the data I require to realize an application

feature.

Yes, theWish List can be an

optional parameter

Introduce Pagination (p. 10) As the API provider, I want to return data sets in manageable chunks

so that clients are not overwhelmed by a huge amount of data arriv-

ing at once.

Possible, depending on mes-

sage structure, but not rec-

ommended

Split Operation (p. 12) As an API provider, I want to offer endpoints that expose operations

with distinct responsibilities so that the API is easy to understand

and use for client developers and can be modified rapidly and flexibly

by provider developers.

No, client has to call new op-

eration with different mes-

sage

Merge Operations (p. 15) As an API designer, I want to remove an API operation from an

endpoint and let another operation in that endpoint take over its

responsibilities so that there are fewer operations to maintain and

evolve and the inner cohesion of the endpoint improves.

No, client has to call new op-

eration, operation messages

change as well

Rename Representation Element
(p. 18)

As a data modeler and/or Data Transfer Object (DTO) designer, I

want to use expressive and domain-specific terminology so that data

representations and their elements become self-explanatory to API

developers on the client as well as on the provider side.

Possible, with additional ef-

fort on provider side to ac-

cept old names

Segregate Commands from Queries
(p. 20)

As an API provider, I want to serve queries and process commands

separately so that I can optimize the respective read and write model

designs independently.

Yes, if API Gateway, Service

Registry, or Version Media-

tor are used

Introduce Version Mediator (p. 22) As an API client, I want to continue to call a deprecated API for

some time, and I expect the provider to support me with a temporary

solution for doing so. The behavior of this solution should be identical

to those of the API that I have been using so far.

Yes, ensuring backward

compatibility is the objec-

tive of this refactoring

Table 1: Refactorings in the order in which they are presented in this paper along with a goal statement expressed in the form

of a user story and an indication of whether the refactoring is backward-compatible.

Client Resource

API Client API Provider

1
2

Repository

Data is passed
through to client

Data Element

Figure 3: Introduce Data Transfer Object: Initial Position Sketch. The API provider responds to a client request (1) with a

message (2) that contains some data elements.

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

3.1.6 Target Solution Sketch (Evolution Outline). When the refac-

toring has been applied, a mapping step takes place that copies

the data to/from the DTO structure. The mapping can preserve the

structure or adjust it, depending on the information needs of the

message recipient. Figure 4 shows a refactored response message.

Now that the internal implementation has been decoupled from

the response entity, the DTO can transfer additional data, such

as Embedded Entities, Link Elements, or Metadata Elements.

Such richer messages help against confetti design.

If the internal implementation type evolves, the DTO can imple-

ment more complex mapping logic to maintain backward compati-

bility. Additional metadata, such as a Version Identifier, can also

be added to the DTO.

3.1.7 Example(s). The following excerpt from a Java Spring Boot

controller shows an implementation of an operation getMyEntity
that fetches an entity from a database repository and directly re-

turns it in its response:

@GetMapping(value = "/{id}")
public ResponseEntity<MyEntity> getMyEntity(

@ApiParam(value = "the entity's unique id")
@PathVariable MyEntityId id) {

MyEntity myEntity = myEntityRepository.getMyEntity(id);
if (myEntity == null) {

throw new ResponseStatusException(
HttpStatus.NOT_FOUND, "Entity Not Found");

}
return ResponseEntity.ok(myEntity);

}

The Spring GetMapping annotation turns the getMyEntity
method into an API operation (HTTP GET) that receives an id
parameter and returns a ResponseEntity. The ResponseEntity
class has helper methods – such as ok – to generate HTTPmessages

(200 OK in this case).

The MyEntity class is also used in the object-relational mapping

in this example. More specifically, the Java Persistence API (JPA) is

used:

@Entity
@Table(name = "my_entities")
public class MyEntity {

String attribute;
...

}

A sample response could look like this:

HTTP/1.1 200
Content-Type: application/json;charset=UTF-8
{

"attribute" : "1c184cf1-a51a-433f-979b-24e8f085a189"
}

When the refactoring has been applied, a MyEntityDto is re-

turned (instead of returning MyEntity directly):

@GetMapping(value = "/{id}")
public ResponseEntity<MyEntityDto> getMyEntity(

@ApiParam(value = "the entity's unique id")
@PathVariable MyEntityId id) {

MyEntity myEntity = myEntityRepository.getMyEntity(id);
if (myEntity == null) {

throw new ResponseStatusException(
HttpStatus.NOT_FOUND, "Entity Not Found");

}
MyEntityDto myEntityDto = MyEntityDto.toDto(myEntity);
return ResponseEntity.ok(myEntityDto);

}

The MyEntityDto DTO is implemented as follows:

public class MyEntityDto {
// Attributes that mirror those in MyEntity
String attribute;
...

static MyEntityDto toDto(MyEntity myEntity) {
// Copy attributes from myEntity to new DTO instance

}
}

Because the DTO mirrors the attributes of MyEntity, the result-
ing HTTP response remains unchanged.

Another example comes from the rapid prototyping framework

JHipster. The application generator provides the option to generate

the Spring Boot code with DTOs. Enabling this option changes

the signature of the service class (the + and - stand for added and

removed lines, respectively):

- public Optional<Customer> findOne(Long id) {
+ public Optional<CustomerDTO> findOne(Long id) {

log.debug("Request to get Customer : {}", id);
return customerRepository

- .findById(id);
+ .findById(id).map(customerMapper::toDto);

}

The CustomerDTO that replaces Customer as the response type
in this example is a simple Java bean with attributes, getters, and

setters. For themapping from entity to DTO and vice-versa, JHipster

uses MapStruct, an annotation processor that frees the developer

from writing trivial mapping code:

import org.mapstruct.Mapper;
@Mapper(componentModel = "spring", uses = {})
public interface CustomerMapper

extends EntityMapper<CustomerDTO, Customer> {}

Note that the refactoring can also be applied to request messages.

3.1.8 Hints and Pitfalls to Avoid. Do not over-eagerly apply this

refactoring to all API operations, but use it only when its value is

higher than its cost (note: this is general advice that makes sense in

most cases). A good reason might be that the implementation data

structures change often and these changes should not be reflected

in the structure of the API-level response messages.

DTO classes and mappings are often straightforward to create,

so various libraries and code-generation tools exist to automate

this task. For example, Lombok is an alternative to MapStruct in the

Java ecosystem. The recently introduced Java Records also address

this topic.

When receiving data, be a Tolerant Reader by making “minimum

assumptions about the structure” and only consuming the data you

need. This approach has the advantage that recipient code will not

be affected if unused parts of the DTO change.

https://jakarta.ee/specifications/persistence/3.0/jakarta-persistence-spec-3.0.html
https://www.jhipster.tech/
https://mapstruct.org/
https://projectlombok.org/features/Data
https://openjdk.java.net/jeps/395
https://martinfowler.com/bliki/TolerantReader.html

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Client

API Client API Provider

2
Repository

Resource

DTO
Mapper

Data Element

1

Mapper adjusts
DTO structures

Figure 4: Introduce Data Transfer Object: Target Solution Sketch. Instead of passing through the data for the client’s request

(1), an additional DTO mapper transforms the data elements before they are returned (2). The implementation types can be

changed without affecting the API.

Another motivation for the refactoring can be that additional

(meta-)data has to be returned, for example, when applying the

Introduce Pagination refactoring.

There is a potential risk of introducing memory leaks in API

implementations when developers allocate and release memory

manually. Marshaling and unmarshaling of request and response

data is often handled by frameworks (for example, JSON to Java

and Java to JSON in Jackson when using Spring); caching might

occur. Unit tests usually will not catch memory bugs; this requires

dedicated reliability tests.

DTOs are meant for communicating with external clients and

should not be used internally in the API implementation. If the API

implementation needs to pass around data internally, it should use

the existing data structures directly. See the article about Internal

Data Transfer Objects by Phil Calçado for reasons whyDTOs should

not be used internally.

3.1.9 Related Content. The DTOs and related mapping logic are

usually placed in an implementation-level Service Layer [11].

Chapter 8, “Evolve APIs”, in [48] discusses evolution strategies

for APIs. Refactorings such as Introduce Version Identifier , Introduce
Version Mediator, Relax Evolution Strategy, and Tighten Evolution
Strategy provide guidance on refactoring an API towards those

patterns.

Domain Driven Design (DDD) offers additional techniques and

patterns to structure domain classes. A brief introduction to Tactic

DDD can be found in the Design Practice Repository (DPR) on

GitHub and the corresponding DPR eBook [45].

Many Enterprise Integration Patterns [18] are related. For in-

stance, Content Enricher and Content Filter can be used to wrap

and map implementation-internal data.

Step 4 of the Stepwise Service Design in DPR [45] advises to

“foresee a Remote Facade that exposes Data Transfer Objects (DTOs)

in the request and response messages of its API operations to de-

couple the (published) languages of frontends and backends and to

optimize the message exchange over the network w.r.t exchange

frequency and message size.” The Remote Facade that is mentioned

in the quote helps to “translate coarse-grained methods onto the

underlying fine-grained objects.” This means that the DTO can be

used to restructure the data so that clients can easily interact with

it while using the network efficiently.

3.2 Refactoring: Add Wish List

also known as: Introduce Payload Feature Toggle, Support Response

Shaping and Expansion

3.2.1 Context andMotivation. AnAPI offers one ormore endpoints

exposing operations to retrieve structured data. Not all API clients

are interested in the same Data Elements that can be retrieved, and

both clients and providers want to reduce unnecessarily transmitted

and processed data.

As an API client, I want exact control over response
message content so that I receive just the data I require
to realize an application feature.

Ideally, a single call should be enough the retrieve all required

data. So one solution would be to offer custom operations for dif-

ferent clients, but this requires much knowledge about the clients

on the provider side, which might not be easy to obtain and change

dynamically. It would also increase maintenance effort and coordi-

nation needs.

3.2.2 Stakeholder Concerns (including Quality Attributes).

#client-information-needs APIs are often used by multiple

clients with different information needs, which makes it

difficult for their providers to offer one-size-fits-all solutions.

#evolvability, #flexibility The information needs of clients

and users vary over time, and an API and its provider-side

implementation should not have to be adjusted every time

something changes in its clients. Maintaining several vari-

ations of the same operation for different clients is possi-

ble but increases the maintenance effort and coordination

needs, which in turn might constrain the flexibility of the

API provider.

https://philcalcado.com/2011/08/01/internal_data_transfer_objects.html
https://philcalcado.com/2011/08/01/internal_data_transfer_objects.html
https://martinfowler.com/eaaCatalog/serviceLayer.html
https://interface-refactoring.github.io/refactorings/introduceversionidentifier
https://interface-refactoring.github.io/refactorings/relaxevolutionstrategy
https://interface-refactoring.github.io/refactorings/tightenevolutionstrategy
https://interface-refactoring.github.io/refactorings/tightenevolutionstrategy
https://socadk.github.io/design-practice-repository/activities/DPR-TacticDDD.html
https://socadk.github.io/design-practice-repository/activities/DPR-TacticDDD.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/DataEnricher.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentFilter.html
https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html
https://martinfowler.com/eaaCatalog/remoteFacade.html

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

#sustainability, #performance, #data-parsimony Overall

response time, throughput, client-side and server-side pro-

cessing time are qualities that concern API clients and their

providers. Unused data that is prepared, transported, and

processed wastes resources and ought to be avoided.

3.2.3 Initial Position Sketch. The initial response shown in Figure

5 comprises several, possibly nested, Data Elements, also known

as attributes.

The targets of this refactoring are API operations with their

request and response messages. The refactoring applies in different

situations: the provider might return data the client is not interested

in, as shown in Figure 5, where the client wants the ability to filter
elements to avoid overfetching. The refactoring is also applicable

when the provider omits data the client must retrieve through a

second request from a different API operation. Clients can use the

Wish List to expand the message content to avoid underfetching

in that case.

3.2.4 Design Smells.

Underfetching Clients have to call multiple API operations

to get all data they require because these operations do not

offer any way to define the targeted Data Elements.

Overfetching Clients throw away large parts of the received

data because the API design follows a one-size-fits-all ap-

proach, and the provider includes all data in responses that

any present or future client might be interested in. For exam-

ple, in an e-commerce API, product procurement information

might only interest a few clients, while most want to learn

about current prices and items in stock. Another phenom-

enon is “sell what is on the truck”: implementation data is

exposed just because it is there, without any client-side use

case.

API does not get to the POINT According to the POINT prin-

ciples for API design, any operation should have a purpose. It
should also be T-shaped (both broad and deep, that is). Under-
fetching and overfetching indicate that these two principles

are violated or only partially met.

3.2.5 Instructions (Steps). Adding aWish List to request messages

lets clients select what Data Elements they want the response

to contain. Applying this pattern reduces the mismatch between

client expectations and provider capabilities:

1. Analyze the current response message structure with respect

to nesting, optionality, and data usage profiles. All its ele-

ments to become selectable must be optional; otherwise, not

wishing for them cannot have any effect.

2. Apply Introduce Data Transfer Object (DTO) or adjust existing
DTOs as needed.

3. Add a set-valued request parameter that allows clients to

enumerate the desired Data Elements. The name of the

parameter could, for example, be called wishList, select,
or expand. Decide on a list separator that is easy to transport

over the given networking protocol (for instance, slashes “/”

might not be a good choice in HTTP APIs, but commas “,”

work well).

4. Populate this parameter when preparing requests on the

client side.

5. Process this parameter when responding to requests on the

provider side. Evaluate which Data Elements to return and

prepare the response message accordingly. Avoid retrieving

data from the data store only to discard it afterward. For

example, customize SQL queries to only fetch the required

attributes and avoid unnecessary joins.

Complete the refactoring with the following steps that apply to

most/all IRC entries (also see Section 4 of the paper on TELL):

• Test the changes to ensure that the new design works and

that the end-to-end capabilities of the API remain unchanged.

Use this opportunity to learn about its effectiveness; establish

success criteria derived from the stakeholder concerns. For

example, performance might be an important metric that

can be tracked by a benchmark.

• Enhance the external API Description and document the

rationale for the new design.

• Upgrade the version number (indicating a backward-compatible

feature enhancement in this case) and inform the clients

when the new version has been released.

• Analyze whether the refactoring application has been suc-

cessful according to the success criteria.

Several approaches to evolution exist. To preserve the original

behavior for clients that omit the Wish List and ensure backward

compatibility, the API should make the new parameter optional

and keep the current response message structure and content. This

approach does not break the clients, but they might miss the oppor-

tunity to learn about the Wish List and will continue to request

the complete response structure. A different, possibly incompatible

approach is only to return a minimal response message by default

so that clients are forced to state their wishes.

3.2.6 Target Solution Sketch (Evolution Outline). The Wish List in

the operation signature lets clients specify certain Data Elements

they are interested in. The provider then tailors the response to

the client’s wishes. This solution is sketched in Figure 6. Chapter

7 of [48] shows a solution sketch with a dedicated List Evaluator

component to handle the client’s wish.

3.2.7 Example(s). The following example from our Lakeside Mu-

tual sample application shows a response of the Policy Management

backend microservice before refactoring. Note that no customer

master data is included, only a customerId:

curl http://localhost/policies/fvo5pkqerr
{

"policyId" : "fvo5pkqerr",
"customerId" : "rgpp0wkpec",
"creationDate" : "2021-07-07T13:40:52.201+00:00",
"policyPeriod" : {

"startDate" : "2018-02-04T23:00:00.000+00:00",
"endDate" : "2018-02-09T23:00:00.000+00:00"

},
...

}

A second request to the respective endpoint could then be per-

formed to retrieve the customer data. However, the API description

specifies that the GET operation may take an optional expand pa-
rameter:

https://medium.com/olzzio/apis-should-get-to-the-point-c79113efa31c
https://medium.com/olzzio/apis-should-get-to-the-point-c79113efa31c

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Client Resource

API Client API Provider

1
2 Repository

Data Element

Not needed

Figure 5: Add Wish List: Initial Position Sketch. The API provider responds to a request from a client (1) with a message (2) that

contains Data Elements. The client does not require all the received data.

API Client API Provider

1

2 Repository

Resource

Has the client
wished for this
data element?

Data Element

Metadata
Element

Client

List Evaluator

Figure 6: Add Wish List: Target Solution Sketch. In its request (1), the client also sends a Wish List. The provider uses this wish

to decide whether some Data Element should be included in the response message (2). The provider implementation might

also delegate this filtering to the repository component to avoid retrieving unneeded data from the data store.

'/policies/{customerIdDto}':
get:

tags:
- customer-information-holder

summary: Get a customer's policies.
operationId: getPoliciesUsingGET
produces:

- '*/*'
parameters:

- name: customerIdDto
in: path
description: the customer's unique id
required: true
type: string

- name: expand
in: query
description: a comma-separated list of the fields

that should be expanded in the response
required: false
type: string

...

Adding expand=customer to the query string results in the fol-

lowing response, which now includes customer master data:

curl http://localhost/policies/fvo5pkqerr?expand=customer
{

"policyId" : "fvo5pkqerr",
"customer" : {

"customerId" : "rgpp0wkpec",
"firstname" : "Max",
"lastname" : "Mustermann",
"birthday" : "1989-12-31T23:00:00.000+00:00",
"streetAddress" : "Oberseestrasse 10",
"postalCode" : "8640",
"city" : "Rapperswil",
"email" : "admin@example.com",
"phoneNumber" : "055 222 4111",
"moveHistory" : [],
...

},
"creationDate" : "2021-07-07T13:40:52.201+00:00",
"policyPeriod" : {

"startDate" : "2018-02-04T23:00:00.000+00:00",
"endDate" : "2018-02-09T23:00:00.000+00:00"

},
...

}

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

The client does not have to issue a second request for the data

when using the Wish List.

3.2.8 Hints and Pitfalls to Avoid. If some of the data that can be

referred to in the wishes resides in another API endpoint, the API

implementation is now depending on that other endpoint, which

could not be permitted or desired according to the overall architec-

ture that has been decided for.

Remember that security measures might have to be adjusted

because customers might retrieve more data in a single call than

before the refactoring. Measures could include checking for autho-

rization and other quality management concerns, like accounting

for Rate Limits.

If providing a single, general-purpose operation for different

clients does not feel right, there is nothing wrong with having

specialized operations, endpoints, or even entire APIs for clients.

See the Backend for Frontend pattern for a deeper discussion of the

pros and cons of this approach.

Too many optional parameters can lead to difficult-to-use APIs,

impeding learnability and resulting in a complex implementation

logic.

3.2.9 Related Content. Step 2 of this refactoring applies Introduce
Data Transfer Object. The MDSL Tools contain an implementation

of this refactoring.

Split Operation could be used to undo this refactoring: if the

Wish List is small (for example, there might only be a single data

element that can be selected), it might be better to offer two separate

operations instead of one with an optional Wish List parameter.

In the example above, we saw that the entire customer entity

was included in the response. If only parts of that data are used, the

Wish Template pattern provides a mock object-based approach

to further tailor the response to the client’s wishes. A Wish List

can be evolved and graduated into such a Wish Template with the

Add Wish Template refactoring.
The Known Uses

2
section of the Wish List pattern explains

variants and implementation options. For example, Atlassian JIRA

has a concept of resource expansion.
A Wish List that is introduced with this refactoring can also

provide flexibility regarding the content of request messages. For

example, when partially updating server-side data, instead of of-

fering many distinct operations that each update a specific field, a

single operation can be provided. The request parameters of a Wish

List are not used to tailor the response but instruct the endpoint

on what data to update. “Practical API Design at Netflix, Part 2:

Protobuf FieldMask for Mutation Operations” in the Netflix tech-

nology blog shows this in the context of gRPC using Field Masks,

the gRPC and Protocol Buffers pendant to our Wish List pattern.

3.3 Refactoring: Introduce Pagination

also known as: Paginate Responses, Slice Response Message

3.3.1 Context and Motivation. An API operation returns a large

sequence of Data Elements. For example, such a sequence may

enumerate posts in a social media site or list products in an e-

commerce shop. TheAPI clients are interested in all Data Elements

2
https://www.api-patterns.org/patterns/quality/dataTransferParsimony/WishList#

sec:WishList:KnownUses

in the sequence but have reported that processing a large amount

of data at once is challenging for them.

As the API provider, I want to return data sets in man-
ageable chunks so that clients are not overwhelmed by
a huge amount of data arriving at once.

3.3.2 Stakeholder Concerns (includingQuality Attributes and Design
Forces).

#performance, #resource-utilization Transferring all Data

Elements at once can lead to huge response messages

that burden receiving clients and the underlying infrastruc-

ture (i.e., network and application frameworks as well as

databases) with a high workload. For instance, single-page

applications that receive several megabytes of JSON might

freeze until all contained JSON objects have been decoded.

#data-access-characteristics In principle, the client wants

to access all data elements, but not all have to be received

at once or every time. For example, older posts to a social

media site might be less relevant than recent ones and can

be retrieved separately.

3.3.3 Initial Position Sketch. The API provider currently returns

an extensive sequence of Data Elements in the response messages

of the operation. Figure 7 shows this initial position sketch.

This refactoring targets an API Retrieval Operation and its

request and response messages.

3.3.4 Design Smells.

High latency/poor response time Responses take a long time

to arrive at the client because a lot of data has to be assembled

and transmitted. This might be evident in a provider-side

log file analysis or client-side performance metrics.

Overfetching A client may not need all data (at once or at all)

and truncate an overly large dataset. Since this truncation

happens on the client side, data was unnecessarily processed

and transmitted.

Spike load Regular requests for large amounts of data cause

Periodic Workload [8] for CPU and memory, for instance,

when a large JSON object has to be constructed (on the

provider side) and read (on the client side). For example, the

“Time-Bound Report” variant of a Retrieval Operation

might lead to relatively large responses, depending on the

time interval size chosen.

3.3.5 Instructions (Steps). Decide on a variant of Pagination that

best fits your API: Page-Based, Offset-Based, Cursor-Based, or Time-

Based Pagination. Clients request the data differently in these vari-

ants; see the Pagination pattern description [48] for details on the

variants and their pros and cons.

1. All variants involve certain metadata, so if the current re-

sponse message directly returns the underlying domain

model elements, possibly contained in a list, wrap the struc-

ture in a Data Transfer Object (DTO) first by applying the

Introduce Data Transfer Object refactoring.
2. Add additional response attributes to the DTO to hold the

metadata required for Pagination (for instance, page size,

page number, and the total number of pages for the Page-

Based pattern variant).

https://samnewman.io/patterns/architectural/bff/
https://microservice-api-patterns.github.io/MDSL-Specification/soad.html
https://interface-refactoring.github.io/refactorings/addwishtemplate
https://developer.atlassian.com/cloud/jira/platform/rest/v3/intro/#expansion
https://netflixtechblog.com/practical-api-design-at-netflix-part-2-protobuf-fieldmask-for-mutation-operations-2e75e1d230e4
https://netflixtechblog.com/practical-api-design-at-netflix-part-2-protobuf-fieldmask-for-mutation-operations-2e75e1d230e4
https://www.api-patterns.org/patterns/quality/dataTransferParsimony/WishList#sec:WishList:KnownUses
https://www.api-patterns.org/patterns/quality/dataTransferParsimony/WishList#sec:WishList:KnownUses

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Client Resource

API Client API Provider

1
2

Repository

Data Element

Figure 7: Introduce Pagination: Initial Position Sketch. The client’s request (1) is met by a large sequence of data elements (2).

3. Adjust the expected parameters in the request message to

give the client control over the number of results returned.

Provide default values so that existing clients will continue

to work.

4. Enhance the unit and integration tests to include and check

for these additional attributes. Test with different chunk

sizes. Include complete versus partial retrievals and changes

to data while being paginated to the test suite.

5. Update API Description, sample code, tutorials, etc., with

information about the Pagination options (for instance, vari-

ant, metadata syntax, semantics, and session management

concerns).

6. Increase the version number as suggested under Semantic

Versioning. The refactoring typically results in a major

update, but a minor update might be sufficient if the API

provider implements the change in a backward-compatible

way.

When already following the API best practice of consistently

returning an object as a top-level data structure, it is straightfor-

ward to implement Pagination in a backward-compatible manner,

returning all results as a single page if no control metadata appears

in incoming requests. While this approach is backward-compatible,

it does not remove any of the above smells.

3.3.6 Target Solution Sketch (Evolution Outline). After the refac-
toring, the client indicates the desired amount and position in the

sequence of data in their request messages (depending on the Pagi-

nation variant). In Figure 8, the number of elements, offset (desired

first element, that is), and so on is represented by Metadata Ele-

ments.

More but smaller messages are exchanged after the refactoring

has been applied.

3.3.7 Example(s). In this example, we will add Offset-Based Pagi-

nation to the Customer Core service of the LakesideMutual sample

application. The customers endpoint in this service returns a list

of customer representations:

$ curl http://localhost/customers
[{

"customerId" : "bunlo9vk5f",
"firstname" : "Ado",
"lastname" : "Kinnett",
...

}, {

"customerId" : "bd91pwfepl",
"firstname" : "Bel",
"lastname" : "Pifford",
...

}]

Note that the response is a JSON array of objects. To transmit

the Pagination metadata, we first wrap the response in a JSON

object (this wrapping is usually done by introducing a DTO that

encapsulates the Data Elements), with a customers property to

hold the entities:

$ curl http://localhost/customers
{

"customers" : [{
"customerId" : "bunlo9vk5f",
"firstname" : "Ado",
"lastname" : "Kinnett",
...

}, {
"customerId" : "bd91pwfepl",
"firstname" : "Bel",
"lastname" : "Pifford",
...

}]
}

Unfortunately, this makes the response backward incompatible.

Initially, the array was returned at the top level of the response, but

now it is nested inside a customers object. Enabling such future

extensibility is why API guidelines (e.g., from Zalando) recommend

always returning an object as the top-level data structure in the

first place.

With the basic structure in place, we can now add HTTP query

parameters (limit, offset) and return the Pagination metadata

(limit, offset, size) in our response. Here is a request for the

next chunk of elements (including the JSON response to it):

$ curl http://localhost/customers?limit=2&offset=2
{

"limit" : 2,
"offset" : 2,
"size" : 50,
"customers" : [{

"customerId" : "qpa66qpilt",
"firstname" : "Devlin",
"lastname" : "Daly",
...

}, {

https://opensource.zalando.com/restful-api-guidelines/#110

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

Resource

API Client API Provider

1
2

3 4

Client Repository

Data Element

Metadata
Element

Figure 8: Introduce Pagination: Target Solution Sketch. After the refactoring, the client includes metadata in the request (1)

that tells the provider which elements to return. In its response (2), the provider returns the desired elements, along with more

metadata (for instance, the total number of elements available). This exchange can then be repeated with follow-up requests (3)

and responses (4), where the client can specify the next page (or offset, cursor, depending on the chosen pattern variant).

"customerId" : "en2fzxutxm",
"firstname" : "Dietrich",
"lastname" : "Cordes",
...

}]
}

See the Lakeside Mutual repository for the full Spring Boot

implementation, including HATEOAS links and filtering.

3.3.8 Hints and Pitfalls to Avoid. TheData Elements the operation
returns typically have an identical structure, as in our example

above. Still, Pagination can also be used if the structures of the

individual Data Elements differ from each other, as long as there

is a sequence of elements that can be split up. If the structure of

the response does not comprise a sequence of elements that can be

split into pages, the Extract Information Holder refactoring offers
an alternative solution to reduce the amount of data transferred.

The API implementation should ensure that the order of elements

is consistent when implementing Pagination. For example, the

API provider can specify an explicit order by when querying a

relational database. Otherwise, clients might receive inconsistent

or duplicate results across multiple pages.

Keep in mind that not all API clients are part of end user appli-

cations. Backend services can also be API clients that may want to

paginate the data they receive.

If the API deployment infrastructure involves load balancers and

failover/standby configurations, keep the following in mind:
3

• The request for a follow-up page (Step 3 of Figure 8) could

go to a different API service provider instance than the first

initial request. In that case, that (second) instance would

perform another database request to retrieve the second

page. However, the data on that second page could have

changed in the repository between the two page requests.

So this only works for static data that does not change often.

3
Thanks to Andrei Furda for suggesting this advice.

• Data consistency/transaction mechanism: Assuming we are

dealing with highly dynamic repository data (e.g., the back-

end database is constantly changing), we need to either make

sure that all page requests reach the same service instance

that initially retrieved the data from the database (effectively

making the service stateful), or develop a caching mecha-

nism in the repository so that data changes between page

requests are not causing data inconsistencies in the client.

• If the service instance fails between the two page requests

(assuming the service is now stateful, and we have a routing

rule to reach the same instance with each page request),

the provider has to notify the client that Pagination has

failed entirely, and the client then must retrieve the first page

again.

Instead of adding Pagination metadata to the body of the re-

sponse message, it can be transmitted in HTTP headers, as in the

GitHub API. This can be an alternative implementation approach if

the body of the response message cannot be adjusted for backward

compatibility.

3.3.9 Related Content. The Introduce Data Transfer Object refac-
toring prepares request and response messages to introduce the

Pagination metadata.

“Patterns for API Design” [48] describes Pagination and its

variants in detail and points at additional information.

3.4 Refactoring: Split Operation

also known as: Decompose API Call

3.4.1 Context and Motivation. An API with endpoints and opera-

tions has been defined and implemented. Some operations acquire

multiple responsibilities because new capabilities are added to the

API. For example, an operation might accept several types of re-

quest messages that lead to different parts of execution logic in the

API implementation.

As an API provider, I want to offer endpoints that expose
operations with distinct responsibilities so that the API is

https://github.com/Microservice-API-Patterns/LakesideMutual/blob/master/customer-core/src/main/java/com/lakesidemutual/customercore/interfaces/CustomerInformationHolder.java#L171
https://interface-refactoring.github.io/refactorings/extractinformationholder
https://docs.github.com/en/rest/guides/traversing-with-pagination

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

easy to understand and use for client developers and can
be modified rapidly and flexibly by provider developers.

3.4.2 Stakeholder Concerns (includingQuality Attributes and Design
Forces).

#single-responsibility-principle and #understandability

An API that offers endpoints with operations that follow

the single responsibility principle is easier to understand for

clients because operations are focused and do not offer extra

capabilities that not all clients use. The API provider team

also benefits from a lower complexity of the implementation.

#maintainability, #evolvability Operations that follow the

single responsibility principle are easier to maintain and

evolve, for instance, because their API provider only has a

single reason to change their request and response message

structure and content when evolving the API. Changing an

operation that does many things is unnecessarily complex

if the change only affects certain aspects of the operation;

unexpected side effects may occur. For example, deprecat-

ing the operation is more complicated if it has multiple

stakeholders.

#testability Test cases have to cover all, and all combinations

of, the many things the operation is in charge of. Testing

such an operation is more complex than testing a single-

responsibility operation.

#security Access restrictions of an API can be implemented

on different levels: whole API, per endpoint, individual oper-

ations, or even depending on the executed control flow paths

in the implementation of operations or the data accessed.

Securing an operation that does many things is complex. The

access control list must include the superset of all involved

participants; changing it has a significant impact.

3.4.3 Initial Position Sketch. The implementation logic chosen by

the operation depends on data sent by the client (represented by

the Metadata Element). This branching parameter could take

the form of a boolean parameter, an enumeration, or any other

value obtained from the request message or the resource state. For

example, the request body could contain the data of a resource

representation, and depending on whether that resource is already

known to the API, it is either updated or created. Figure 9 visualizes

this initial position.

This refactoring targets an endpoint implementation and its

request and response messages.

3.4.4 Design Smells.

Role and/or responsibility diffusion and low cohesion An

operation does (too) many things. Clients have to understand

all these things to use the operation correctly. Its request

message is rather deeply structured and may contain op-

tional, generic, or variable parts to express diverse input

options. This complexity may lead to errors and a degraded

developer experience. The internal cohesion of the operation

is low.

Combinatorial explosion of input options Boolean param-

eters or other flags that determine the execution path lead to

a combinatorial explosion of possibilities. Explaining these

options bloats the API Description and is problematic for

the client, who has to understand this complex option space

to prepare valid requests, and the provider, who has to vali-

date and process the parameter handling. API testing on the

client and provider side is also complicated.

Change log jitter or commit chaos The operation has been,

and continues to be, modified frequently, according to the

commit logs kept by the version control system. Frequent

changes may indicate that the operation has too many re-

sponsibilities and is not focused enough.

3.4.5 Instructions (Steps). To split an operation, the following steps
apply:

1. Copy the operation implementation, remove the branching

metadata parameter (in the copy), and delete the part of

the implementation that is no longer needed for the new

operation.

2. (Optional) If there is common code in the two operations,

extract it into a new method and call it from both operations.

This step is optional because the shared code might be small

enough to be inlined in both operations (consider the Rule

of Three of refactoring
4
by Fowler [12]).

3. Expose the new operation to clients. Depending on the un-

derlying technology, this can be non-trivial. When using

HTTP, choosing a different (previously unused) verb might

be appropriate for the new operation. See Singjai et al. [32]

for a collection of patterns on designing API operations.

4. Copy the tests covering the implementation parts that now

reside in the copy. Remove the obsolete branching metadata

parameter from the tests, adjust the test data and assertions,

and ensure the tests pass.

5. Include the newly created operation in the API Description.

Inform clients that a new operation now covers the previ-

ous behavior. The decision logic previously encoded on the

provider side must now be implemented on the client side

instead of just passing a branching parameter.

6. If access to the original operation was restricted to specific

clients, apply the same security rules to the new operation.

7. If necessary, to avoid breaking changes, mark the branching

metadata parameter as deprecated or immediately remove it,

along with any unused code in the original operation imple-

mentation. Note that this decision depends on the lifecycle

guarantees given to clients, as documented as one of the

Evolution Patterns.

For backward compatibility, a Content-Based Router [18] can

forward requests to the correct operation.

3.4.6 Target Solution Sketch (Evolution Outline). After the refac-
toring, the behavior of the original operation is cut into two parts,

which are implemented by two distinct operations (“Op1” and

“Op2”).

Splitting the operation into two (or more) distinct operations

makes each one easier to use and maintain. No provider-side dis-

patching or branching logic is required anymore. As a downside, the

client implementation might become more complex because it has

4
Not to be confused with the Rule of Three of the patterns community: Only call it a

pattern if there are at least three known uses (https://wiki.c2.com/?RuleOfThree).

https://www.api-patterns.org/patterns/evolution/
https://wiki.c2.com/?RuleOfThree

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

1
2

API Client API Provider

Op1

Client

3

4

«Execute
operation Op2»

Op2

Metadata
Element

Figure 9: Split Operation: Initial Position Sketch. A client sends a request (1) that includes metadata, such as an enumeration

value or boolean flag. The provider uses this information to steer the control flow, choosing between operations (Op1, Op2) to

execute and compose a response message (2). This metadata might be optional, as shown in the second exchange (Request 3,

Response 4). The provider might choose a default operation or even return an error message in that case.

1
2

Op1

API Client API Provider

Op2
3

4

Client

?

Call
Op1

Call
Op2

Figure 10: Split Operation: Target Solution Sketch. Instead of using metadata parameters to steer the provider behavior, two

distinct operations (Op1, Op2) are offered. Clients can invoke one (Request 1, Response 2) or the other (Request 3, Response 4).

to decide which operation to call. The amount of request-response

message exchanges usually stays the same, though.

3.4.7 Example(s). The following example from a construction man-

agement API shows a Spring Boot implementation of an endpoint

that offers an updateConstruction operation to modify the data

of a particular building site, specified by the id parameter:

@PutMapping("/constructions/{id}")
public ResponseEntity<Construction> updateConstruction(

@PathVariable(value = "id") Long id,
@PathVariable(value = "partial-update") Boolean partial,
@NotNull @RequestBody Construction construction) {

if (!constructionRepository.existsById(id)) {
throw new ResponseStatusException(

HttpStatus.BAD_REQUEST, "Entity not found");
}

Construction result;
if (partial) {

result = constructionRepository
.findById(construction.getId())
.map(existingConstruction -> {

if (construction.getName() != null) {
existingConstruction.setName(

construction.getName());
}
// repeat this for all attributes
return existingConstruction;

})
.map(constructionRepository::save).get();

} else {
result = constructionRepository.save(construction);

}

return ResponseEntity.ok().body(result);
}

The operation takes a boolean partialUpdate parameter. If it

is set to true, the attributes that the client provides in the request

body are overwritten. If partialUpdate is false, the entire entity
is replaced, as shown in the else block.

HTTP provides the PATCH verb to represent partial updates

(whereas PUT methods are supposed to replace the entire resource).

So we can move the “patch” parts of the operation to a new opera-

tion:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

@PatchMapping("/constructions/{id}")
public ResponseEntity<Construction> updatePartially(

@PathVariable(value = "id") Long id,
@NotNull @RequestBody Construction construction) {

if (!constructionRepository.existsById(id)) {
throw new ResponseStatusException(

HttpStatus.BAD_REQUEST, "Entity not found");
}

Construction result = constructionRepository
.findById(construction.getId())
.map(existingConstruction -> {

if (construction.getName() != null) {
existingConstruction.setName(

construction.getName());
}
// repeat this for all attributes
return existingConstruction;

})
.map(constructionRepository::save).get();

return ResponseEntity.ok().body(result);
}

Note the PatchMapping annotation on the updatePartially
operation that was added. The old updateConstruction operation
has become much simpler now (the + and - stand for added and

removed lines, respectively):

@PutMapping("/constructions/{id}")
public ResponseEntity<Construction> updateConstruction(

@PathVariable(value = "id") Long id,
- @PathVariable(value = "partial-update") Boolean partial,

@NotNull @RequestBody Construction construction) {
if (!constructionRepository.existsById(id)) {

throw new ResponseStatusException(
HttpStatus.BAD_REQUEST, "Entity not found");

}
+ Construction result =
+ constructionRepository.save(construction);
- if (partial) {
- result = constructionRepository
- .findById(construction.getId())
- .map(existingConstruction -> {
- if (construction.getName() != null) {
- existingConstruction.setName(
- construction.getName());
- }
- // repeat this for all attributes
- return existingConstruction;
- })
- .map(constructionRepository::save).get();
- } else {
- result = constructionRepository.save(construction);
- }

return ResponseEntity.ok().body(result);
}

In this example, no operation in the endpoint had a PatchMapping
so far. If this had been the case, we would have had to introduce a

new endpoint for the split-off operation and apply Move Operation
to move either operation to the new endpoint.

Even though the method name updateConstruction is an im-

plementation detail and not exposed to API clients, it could also

be renamed. For example, replaceConstruction would fit better

with the new responsibility of the method.

3.4.8 Hints and Pitfalls to Avoid. When using HTTP, follow the

conventions of the protocol. For example, a PUT request should be

idempotent, meaning that the result of sending such a request is

the same whether it has been sent exactly once or multiple times.

In contrast, a POST request is not necessarily idempotent. Sending

it multiple times might lead to incorrect provider-side state, such as

duplicated data. Not following such conventions confuses clients

and may cause API usage bugs.

HTTP redirections provide a technical solution for informing

clients about the new operation [9]. This approach only works if

the URI changes. Using redirects to tell clients to use another HTTP

verb is not possible.

With respect to security concerns, the split-off operation should

probably be accessible to the same clients as the original operation

if authentication and authorization are required.

Possible impacts on Rate Limits, monitoring, caching, and other

aspects of the API should be considered as well.

3.4.9 Related Content. Merge Operations is the inverse refactoring.
Add Wish List can also combine two Retrieval Operations that

return related data.

Once an operation has been split into two, one can also be moved

to a different endpoint with the Move Operation refactoring.

When refactoring the API implementation, the Extract Method

[12] refactoring is eligible.

The correct use of HTTP verbs and many other REST implemen-

tation hints are explained in the RESTful Web Services Cookbook

[1].

3.5 Refactoring: Merge Operations

also known as: Colocate Responsibilities, Consolidate Operations

3.5.1 Context and Motivation. An API endpoint contains two oper-

ations with similar, possibly overlapping responsibilities. Typically,

this was not the intention of the original API designers, but the

result of an API evolution process. For instance, the API provider

might have added a new operation to the endpoint instead of ad-

justing an existing one.

As an API designer, I want to remove an API operation
from an endpoint and let another operation in that
endpoint take over its responsibilities so that there are
fewer operations to maintain and evolve and the inner
cohesion of the endpoint improves.

3.5.2 Stakeholder Concerns (includingQuality Attributes and Design
Forces).

#understandability, #explainability, #learnability There

are many reasons to change an API (not just refactorings)

[35]. APIs should be changed as much as required and as

little as possible, and ripple effects be avoided. One of the

first steps in related maintenance tasks is to determine

which parts of the system should be changed. An API whose

https://interface-refactoring.github.io/refactorings/moveoperation
https://www.baeldung.com/cs/idempotent-operations
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections
https://interface-refactoring.github.io/refactorings/moveoperation
https://refactoring.guru/extract-method

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

endpoints have clearly identified roles helps developers to

quickly understand the API.

#cohesion Cohesive design elements (here: API operations in

an endpoint) belong together naturally because they share

certain properties. In an API design context, the security

rules that apply are an example of such a property. Cohesion

is desirable because it makes the system easier to understand

and maintain. ISO/IEC/IEEE 24765 [10] defines cohesion as

“manner and degree to which the tasks performed by a single

software module are related to one another.”

#coupling In our context, coupling is a measure of how closely

connected and dependent on each other endpoints and

their operations are. The coupling may concern the data ex-

changed and/or the operation call sequencing. SeeWikipedia

entry for Coupling and Loose Coupling pattern for general

explanations.

3.5.3 Initial Position Sketch. The refactoring is applicable if the

current API exposes an endpoint with at least two operations, as

shown by the following MDSL snippet:

endpoint type Endpoint1BeforeMerge
exposes

operation operation1
expecting payload "RequestMessage1"
delivering payload "ResponseMessage1"

operation operation2
expecting payload "RequestMessage2"
delivering payload "ResponseMessage2"

As the snippet shows, this refactoring targets a single endpoint

and two of its operations. Figure 11 visualizes this initial position.

The API offers two operations, which clients may or may not call

in any particular order.

3.5.4 Design Smells.

Responsibility spread Endpoint roles and/or operation re-

sponsibilities are rather diffuse; the Single Responsibility

Principle is violated. For instance, API clients serving a par-

ticular stakeholder have to call multiple operations to satisfy

their information needs. Another example would be that a

choreographed or orchestrated business process implementa-

tion has to consult too many distributed operations to fulfill

its job.

High coupling Two or more operations perform narrowly fo-

cused, rather low-level activities. Clients have to understand

and combine all of these activities to achieve higher goals,

leading to a degraded developer experience and coordination

needs. This causes these operations to be coupled with each

other implicitly.

REST principle(s) violated The “Uniform interface” is an im-

portant design constraint imposed by the REST style that

manyHTTPAPIs employ. RESTmandates using the standard

HTTP verbs (POST, GET, PUT, PATCH, DELETE, etc.), which

are associated with additional constraints. For instance, GET

and PUT requests must be idempotent to be cachable [1].

Sometimes, mismatches between the API semantics and the

REST constraints can be observed; sometimes, the REST con-

straints limit extensibility (for instance, when a resource

identified by a single URI runs out of verbs) [30].

3.5.5 Instructions (Steps). This refactoring requires careful plan-
ning and execution:

1. Merge the data structures used in the two request messages

if they differ. A straightforward approach is to combine and

wrap the original message contents in a new DTO (see Intro-
duce Data Transfer Object) in the consolidated message.

2. (Optional) Add a boolean flag to the request message to

distinguish the merged operations, for instance, to dispatch

the request to the proper API implementation logic. This

step is optional because it might be possible to inspect the

merged request message to select the implementation logic

(see the example later).

3. Merge the response message data structures as well. A DTO

can be used to do so.

4. Consolidate the implementation code, deciding how to route

incoming requests and how to prepare the consolidated re-

sponse.

5. Add at least two tests if the boolean flag introduced in Step 2

is present: one sets it to false, and the other sets it to true.
Test the new API and compare old and new behavior.

6. Update supporting artifacts such as API Description and

usage examples. Show how to use the boolean flag (if intro-

duced) and explain how to migrate from the old to the new

API.

7. Inform the API user community about the change and its ra-

tionale. Make the news item self-contained or provide direct

links to the updated API Description and usage examples;

avoid general statements such as “We have changed our API

in an incompatible way. Please consult the documentation

to learn how.”

The changes introduced in Steps 1 to 4 are not backward-

compatible per se. Steps 5 to 7 apply to most refactorings in our

catalog; we refer to them as TELL (Test, Explain, Let Know, and

Learn).

3.5.6 Target Solution Sketch (Evolution Outline). The API contract
from the Initial Position Sketch above still contains one endpoint.

But only one operation is present now (note that { , } is the

MDSL notation for Parameter Trees [47], an abstraction of JSON

objects):

data type ConsolidatedRequestMessage {
"RequestMessage1", "RequestMessage2"

}
data type ConsolidatedResponseMessage {

"ResponseMessage1", "ResponseMessage2"
}

endpoint type Endpoint1AfterMerge
exposes

operation operation1and2Merged
expecting payload

"RequestMessage12":ConsolidatedRequestMessage
delivering payload

"ResponseMessage12":ConsolidatedResponseMessage

https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://www.cloudcomputingpatterns.org/loose_coupling/
https://microservice-api-patterns.github.io/MDSL-Specification/
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Single-responsibility_principle

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

1
2

Op1

API Client API Provider

Op2
3

4

Client

Data Element

Metadata
Element

Figure 11: Merge Operations: Initial Position Sketch. The API provider offers two distinct operations (Op1, Op2). The client can

invoke one (Request 1, Response 2) or the other (Request 3, Response 4). Some metadata and other data elements are exchanged.

Figure 12 visualizes the resulting API design that uses a Content-

Based Router to select the operation to execute.

3.5.7 Example(s). In the following example of the user administra-

tion endpoint of an API implemented in Spring Boot, there are two

operations to change the e-mail address and username, respectively.

Both use the same endpoint /users/{id}, but the developer de-
cided to use different HTTP verbs (POST and PATCH) to implement

the two operations:

@PostMapping("/users/{id}")
public ResponseEntity<User> changeEmail(

@RequestBody ChangeEmailDTO changeEmailDTO) {
log.debug("REST request to change email : {}",

changeEmailDTO);
...

}

@PatchMapping("/users/{id}")
public ResponseEntity<User> changeUsername(

@RequestBody ChangeUsernameDTO changeUsernameDTO) {
log.debug("REST request to change username : {}",

changeUsernameDTO);
...

}

Keep in mind that the API client does not see these method

names but the POST and PATCH verbs only. Using different HTTP

verbs simply to distinguish between two operations violates REST

principles. POST is meant for creating resources, not updating them,

as done in changeEmail. These endpoints can then be used as

follows:

curl -X POST api/users/123 -d '{ . . . }'
curl -X PATCH api/users/123 -d '{ . . . }'

The HTTP verb used is the only difference from the perspective

of the API client; the fixed amount of available HTTP verbs limits

future extensibility given (maybe passwords should also be change-

able?). Hence, it is decided to merge the two operations and create

a composite request message DTO:

class ChangeUserDetailsDTO {
ChangeEmailDTO changeEmail;
ChangeUsernameDTO changeUsername;

}

@PatchMapping("/users/{id}")

public ResponseEntity<User> changeUserDetails(
@RequestBody ChangeUserDetailsDTO changeUserDetailsDTO) {
if (changeUserDetailsDTO.changeEmail != null) {

log.debug("REST request to change email : {}",
changeUserDetailsDTO.changeEmail);

...
}
if (changeUserDetailsDTO.changeUsername != null) {

log.debug("REST request to change username : {}",
changeUserDetailsDTO.changeUsername);

...
}
...

}

Further operations changing other properties of the user can

now be implemented by extending the DTO without introducing

new operations or even endpoints. The DTO content determines

the nature of the change; no boolean parameter was needed in this

example. Clients can now also initiate several changes in a single

request.

3.5.8 Hints and Pitfalls to Avoid. Merging operations is more chal-

lenging than merging endpoints (which usually merely group oper-

ations under a unique address such as a parent URI):

• The operations to be merged must appear in the same end-

point. Apply Move Operation first if needed.

• Do not break HTTP verb semantics when merging (in HTTP

resource APIs). For instance, idempotence might get lost if a

replacing PUT and an updating PATCH are merged.

• When merging the request and response messages, decide

where and how themergedmessages embed the original mes-

sage elements. Some data exchange formats have first-class

concepts for choices. If this is not the case, the optionality of

list items combined with feature flags/toggles can be used.

• The complexity of the implementation logic and the tests

increases when merging operations: The implementation

logic must distinguish between the merged operations. The

tests must cover all possible combinations of the merged

operations.

Implementing this refactoring in a backward-compatible way is

not trivial because of the changes imposed on request and response

messages. One tactic could be to provide a new operation for the

https://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
https://interface-refactoring.github.io/refactorings/moveoperation

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

Client Content-Based
Router

API Client API Provider

Op1 Op2

«Execute
operation Op1»

1

2 Op1 Op2

«Execute
operation Op2»

Data Element

Metadata
Element

Figure 12: Merge Operations: Target Solution Sketch. The client sends a request (1) that includes one or more data elements.

This figure shows two data elements, but they might not all be mandatory. The provider uses a Content-Based Router to execute

operations (Op1, Op2) depending on the content of the message and returns a response, for example, some metadata (2).

merged functionality and keep the original ones in place. The origi-

nal ones can then forward incoming requests to the new operation,

wrapping and un-wrapping request and response messages.

See theMerge Endpoints refactoring for Confidentiality, Integrity,
and Availability (CIA) considerations; inconsistent or inappropriate

CIA settings (authentication, authorization) are less likely to result

from this refactoring (depending on how the API endpoint and

operations have been identified) but are still worth considering.

3.5.9 Related Content. This refactoring reverts Split Operation. If
the two operations do not reside in the same endpoint, an upfront

Move Operation refactoring can prepare its application.

The Service Cutter tool and method suggest sixteen coupling cri-

teria [14]. These criteria primarily apply when merging endpoints

but are also worth considering when merging operations.

3.6 Refactoring: Rename Representation

Element

also known as: Rename Parameter, Rename Payload Part

3.6.1 Context and Motivation. An API endpoint operation expects

data from clients and/or delivers data to them. The data representa-

tions are structured, and certain parts of the structural elements are

named (for instance, keys in key-value pairs or type definitions).

As a data modeler and/or Data Transfer Object (DTO)
designer, I want to use expressive and domain-specific
terminology so that data representations and their el-
ements become self-explanatory to API developers on
the client as well as on the provider side.

3.6.2 Stakeholder Concerns (includingQuality Attributes and Design
Forces).

#understandability, #explainability, #learnability Awell-

chosen name expresses what a representation element (such

as a JSON object with its properties) has to offer, which helps

clients decide whether and how to use it. The named element

has a single meaning and purpose.

#maintainability The more expressive and meaningful a

name (for instance, the key in a key-value pair) is, the easier

it is to search and navigate the code base, for instance, when

fixing bugs and adding features during API evolution. Split
Operation covers this quality in more detail.

3.6.3 Initial Position Sketch. Let us assume the following simple

endpoint design (notation: abstract MDSL):

endpoint type Endpoint1
exposes

operation operation1
expecting payload {

"v1":D<string>,
"v2":D<int>}

// one-way exchange in this example,
// so no response message

As the sketch shows, the refactoring targets a single endpoint

and one of its operations. Presumably, the v in v1 and v2 stands

for “value”, but this does not get clear from the terse one-letter,

one-number acronyms v1 and v2.

3.6.4 Design Smells.

Cryptic or misleading name The chosen element name is

difficult to understand for stakeholders unfamiliar with the

API implementation. For instance, it might not be part of the

agreed-upon domain vocabulary or unveil implementation

details such as column names in database tables. It might

https://interface-refactoring.github.io/refactorings/mergeendpoints
https://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
https://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
https://interface-refactoring.github.io/refactorings/moveoperation
https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria
https://microservice-api-patterns.github.io/MDSL-Specification/

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

also be ambiguous and overloaded with different meanings

(in the same context).

Security by obscurity Sometimes, it is argued that unlabeled,

undocumented data is harder to tamper with. But such a

tactic alone does not qualify as a sound security solution. It

harms maintainability because it increases the risk of intro-

ducing bugs because of a lack of clarity for maintainers and

auditors, not just attackers.

Change log jitter or commit chaos The name has been, and

continues to be, frequently changed according to the logs

kept by the version control system. Frequent changes indi-

cate that the domain language is not yet stable or has not yet

been defined, communicated, and agreed upon sufficiently.

Leaky encapsulation and high coupling Program-internal

names or identifiers might accidentally have leaked into the

API. For example, the initial API could have been generated

from internal classes. For API clients, such internal names

might be hard to understand.

3.6.5 Instructions (Steps). This refactoring is rather straightfor-

ward to apply:

1. Discuss alternative new names and decide on one. Have this

decision reviewed and agreed upon.

2. Apply code-level rename refactorings; do not forget to up-

date code-level comments when doing so. If the code is gener-

ated from a specification, update the API design specification

and then re-generate the code.

3. Update API tests and API Description.
5

Several strategies for backward compatibility exist. The imple-

mentation could continue to accept the old names as well. However,

this approach can quickly become unwieldy if many such changes

accumulate over time. By applying the Introduce Version Mediator
refactoring, clients can continue using the old names which will

then get translated by the version mediator to the new names.

3.6.6 Target Solution Sketch (Evolution Outline). The element

names v1 and v2 in the initial position have been replaced by

customerName and customerID in this MDSL sketch:

endpoint type Endpoint1
exposes

operation operation1
expecting payload {

"customerName":Data<string>,
"customerID":Data<int>

}

Arguably, customerName is more expressive than v1 unless the

representation element is a simple loop counter (which does not

seem to be the case). This renaming makes the API specification

easier to understand, assuming that a common understanding of the

term “customer” has been reached within a context and community.

operation1 remains generic in the above sketch, which makes it a

candidate target for Rename Operation.

3.6.7 Example(s). In the Policy Management backend of the Lake-

side Mutual sample application, we find a Data Transfer Object

5
Step 3 applies to all refactorings and is part of the general Test, Explain, Let Know

and Learn (TELL) activities to enact and evaluate refactorings (see Section 4 for more

information).

(DTO) called InsuranceQuoteDto, which is exposed in the Web

API that is provided by a RESTful HTTP controller:

public class InsuranceQuoteDto {
@Valid
@NotNull
private Date expirationDate;

@Valid
@NotNull
private MoneyAmountDto insurancePremium;

@Valid
@NotNull
private MoneyAmountDto policyLimit;

...
}

The name InsuranceQuoteDto as well as expirationDate,
insurancePremium, and policyLimit are all expressive names;

names such as inputData, date, and amountwould be less domain-

specific and could be renamed with this refactoring.

One could argue that abbreviations and technical terms should

be avoided in API naming. Removing Dto from the name in a

refactoring would make the name shorter and cleaner but also

hide the architectural role played by the class and go against the

“architecturally-evident coding style” recommended by Fairbanks

[7]. In this particular case, the acronym is explained in a comment

in the source code.

3.6.8 Hints and Pitfalls to Avoid. Coming up with good names

is challenging, and some authors consider it one of the hardest

problems in software engineering [3]. When choosing names, keep

in mind that good names should:

• Precisely reveal the purpose/intent of the named element.

• Be intelligible, so they do not need to be deciphered first.

• Be pronounceable so that they can be talked about.

• Be as simple and short as possible, but not shorter.

• Adhere to the conventions of the interface specification

and/or programming language in use.

When applying this refactoring, one should promote a controlled

amount of domain vocabulary into the published language of the

API. Optionality and value ranges should be explained in the API

documentation. Comments in machine-readable specifications and

specification documents targeting humans are valid locations for

this information. The reuse of already existing data structures and

standard vocabularies may be considered if that is permitted, for

instance, microformats or schema.org
6
.

Mapping implementation-level data structures one-to-one intro-

duces undesired tight coupling between API and implementation

and should therefore be avoided. Implementation-level data struc-

tures should be wrapped or mapped (see Introduce Data Transfer
Object) to hide implementation details.

It makes sense to avoid technical jargon (in particular jargon

that might go out of fashion soon or has a different meaning in

other communities already). As already touched upon in the ex-

ample, abbreviations should be avoided in names unless they are

6
Example: how should we name and structure the attribute to contain a user address?

Easy, use the already existing definition https://schema.org/PostalAddress.

https://interface-refactoring.github.io/refactorings/renameoperation
https://github.com/Microservice-API-Patterns/LakesideMutual
https://github.com/Microservice-API-Patterns/LakesideMutual
https://github.com/Microservice-API-Patterns/LakesideMutual/blob/master/policy-management-backend/src/main/java/com/lakesidemutual/policymanagement/interfaces/dtos/insurancequoterequest/InsuranceQuoteDto.java
https://www.domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://microformats.org/
http://schema.org
https://schema.org/PostalAddress

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

widespread in the API stakeholder community. Humor is a good

thing, of course, but technical specifications are not necessarily a

good place to (try to) be funny; ethical codes of conduct must not

be violated when choosing names (e.g., [CoC:ACM]).

3.6.9 Related Content. Representation elements can be grouped by

applying Introduce Data Transfer Object. Rename Operation and Re-
name Endpoint are available to rename API parts with a larger scope.

The Id Element pattern [PatternsForAPIDesign:2022] makes nam-

ing suggestions (for instance, regarding uniqueness) and provides

pointers to additional information. Data Element is the general

pattern for any kind of representation element.

The book “The Programmer’s Brain: What every programmer

needs to know about cognition” by Hermans [16] has a chapter on

“How to get better at naming things” that explains the cognitive

processes involved in reading names in code and provides practical

advice.

Fowler [12] covers various rename refactorings, such as “Rename

Variable” and “Rename Field.” And “The Art of Readable Code” [5]

has helpful hints on naming program elements that also apply to

APIs. Benner [3] provides rich advice as well.

“API Handyman” Arnaud Lauret provides many examples and

counterexamples in his book [21] and the online API Stylebook.

Applying this refactoring might be the result of an API review, and

a new name then has to be decided upon. “A Checklist for API

Design Review” is available online.

The blog post “A Definition of Done for Architectural Decisions”

presents five criteria to assess whether a decision such as a name

change has been elaborated upon sufficiently: evidence, criteria,

agreement, documentation, and realization/review.

3.7 Refactoring: Segregate Commands from

Queries

also known as: Introduce Command Query Responsibility Segrega-

tion (CQRS)

3.7.1 Context and Motivation. An endpoint cohesively bundles all

operations dealing with a particular domain concept. Some of these

operations modify the application state on the API provider side,

while others only retrieve data. Some but not all read operations

(following the Retrieval Operation pattern [48]) offer declarative

query parameters and return rich, multi-valued response structures,

causing provider-side workload.

As an API provider, I want to serve queries and pro-
cess commands separately so that I can optimize the
respective read and write model designs independently.

This distinction between commands and queries is known as

the Command Query Separation (CQS) principle by Meyer [24].

CQS states that every method in an object-oriented program should

either be a command that performs an action and thus changes

state or a query that returns data to the caller, but not both.

3.7.2 Stakeholder Concerns (includingQuality Attributes and Design
Forces).

#performance and #scalability Computationally expensive

workloads such as loading data from data stores, filtering,

and formatting it, and high data volumes may make certain

operations expensive. Such complex query operations should

not slow down cheaper operations exposed by the same

endpoint (for example, atomic updates of single attribute

values).

#agility and #development-velocity Read operations and

write operations may evolve at different speeds. For example,

data analytics queries may often change, driven by client

demand and insights just gained, while commands to modify

master data might only change with major releases, if at all.

#flexibility to change the API vs. #simplicity Keeping the

read and write operations of an endpoint together is easy

to understand and brings functional endpoint cohesion. A

separation of these types of operations increases the ability

to change them independently from each other; this can

then happen more flexibly and more frequently.

#security, #data-privacy Read and write operations might

have different protection needs. Few user roles, for instance,

are usually authorized to update master data; many or all

user roles may read it. If there are two separate endpoints

for read and write access, it might be easier to fine-tune the

Confidentiality, Integrity, and Availability (CIA) rules and

related compliance controls. See the OWASP API Security

Top 10 for risks and related advice on API security.

3.7.3 Initial Position Sketch. The operations an API endpoint offers
can be sorted into four categories, depending on whether they

read/write state. Each target quadrant is represented by a “Pattern

for API Design” [48], as shown in Figure 13.

• Computation Functions derive a result solely from the

client input, neither reading nor writing server-side state.

• State CreationOperations initialize some new state at the

API endpoint (for instance, by creating an implementation

resource such as a customer record). A minimal amount of

state can be read, for example, to ensure the uniqueness of

identifiers.

• Retrieval Operations are read-only queries that clients

use to fetch data.

• State Transition Operations update the server-side state,

including full or partial replacement and deleting of state.

These operations are often implemented as CRUD (create, read,

update, delete) resources, shown in Figure 14.

The target of the refactoring is an endpoint, such as an Infor-

mation Holder Resource [43] that offers both state-writing and

state-reading operations. These operations can be realized by HTTP

verbs/methods such as POST, GET, PUT, PATCH, and DELETE, sup-

ported by an HTTP resource that a URI identifies.

3.7.4 Design Smells.

High latency/poor response time Poor performance may be

caused by too tight operation coupling. Expensive queries

slow down the execution of write operations (for instance,

operations performing state creation or transition). Transac-

tional isolation is insufficient.

Feature/release inertia a.k.a. stale roadmap An endpoint

provides both read and write operations; there might be

many read, but only few write operation calls. These types

of operations evolve at different speeds; possibly, different

https://interface-refactoring.github.io/refactorings/renameoperation
https://interface-refactoring.github.io/refactorings/renameendpoint
https://interface-refactoring.github.io/refactorings/renameendpoint
http://apistylebook.com/design/topics/#naming
https://medium.com/nerd-for-tech/a-checklist-for-api-design-reviews-5f7db45b0cb3
https://medium.com/nerd-for-tech/a-checklist-for-api-design-reviews-5f7db45b0cb3
https://medium.com/olzzio/a-definition-of-done-for-architectural-decisions-426cf5a952b9
https://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

State Write

YesNo

State Creation Operation
(create)

Computation FunctionNo

St
at

e
R

ea
d

State Transition Operation
(update, delete)

Retrieval Operation
(read)Yes

Figure 13: The combination of reading and writing state leads to four different operation responsibilities.

Client Information
Holder

Resource

API Client API Provider

Repository
create

update

read

delete

Figure 14: Segregate Commands from Queries: Initial Position Sketch. Commands and Queries in Same Endpoint

development teams are responsible for them. For instance,

new query options in a customer relationship management

applicationmay be introduced in every two-week iteration in

response to frequently arriving customer inquiries and client

insights. In contrast, commands evolve with a frequency im-

posed by a master data management or Enterprise Resource

Planning (ERP) package in the backend. The operations also

differ in the amount of design and test work required; write

operations change state and, therefore may have nontrivial

“given” preconditions and “then” postconditions and require

consistency management. The conceptual integrity of the

endpoint and all of its read and write operations has to be

preserved during each evolution step. As a result, it takes

longer than desired to introduce new features, new queries

in particular.

Too coarse-grained security or data privacy rules The se-

curity and data protection requirements of commands and

queries differ. They are specified on the endpoint rather

than the operation level. Hence, generalization has to take

place that bears risks such as under-specification and over-

engineering.

3.7.5 Instructions (Steps). Command Query Responsibility Segre-

gation (CQRS) is an architectural pattern that increases flexibility

but adds complexity. It can be introduced in the following steps:

1. Classify and group endpoint operations by their purpose and

impact on provider-side state: read-only, write-only, read-

write, neither-read-nor-write.

2. Apply the Extract Endpoint refactoring to move the read-only

operations to a new endpoint, the Read Model API.

3. Adjust the API implementation to match the outcome of

Steps 1 and 2. Consciously decide for a data store serving

both endpoints, the new Read Model API and the already

existing endpoint that has become a Write Model API.

4. (Optional) Distribute the data store. When distributing data

stores, choose suited data replication and consistency man-

agement solutions (for example, how current/fresh should

the replicated data be?). Include all data stores in the backup

and recovery strategy [25].

5. Test “sunny day scenario” as well as “edge” cases and error

situations such as slow and temporarily failing network and

replication conflicts.

6. Update the API Description, including the technical API

contract and supporting documentation.

7. Provide teaching material that covers migration from the old

domain concept-oriented API to the new command-query

API: What has to be changed in the API client? How do the

Service Level Agreements change?

https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://interface-refactoring.github.io/refactorings/extractendpoint

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

The operation responsibility Computation Function neither

reads nor writes provider-side application state.
7
Such operations

may appear in command endpoints as well as query endpoints; they

might also go to separate stateless endpoints, yielding a “Command

Computation Responsibility Segregation” variant of CQRS.

The messages and operations stay the same when applying this

refactoring. However, the resource address might change. An inter-

mediary such as an API Gateway [27], Service Registry, or Version

Mediator can be used to preserve backward compatibility by map-

ping or forwarding messages.

3.7.6 Target Solution Sketch (Evolution Outline). After applying the
refactoring, shown in Figure 15, two distinct endpoints/resources

implement the API operations. One is a Processing Resource

handling the commands, and the other is an Information Holder

Resource handling the queries.

3.7.7 Example(s). The following example shows an introduction

of CQRS (notation: Context Mapper DSL (CML)):

Service PublicationManagementFacade {
// a state creation/state transition operation:
@PaperId add(@PublicationEntryDTO newEntry);

// retrieval operations:
@PublicationArchive dumpPublicationArchive();
Set<@PublicationEntryDTO>

lookupPublicationsFromAuthor(String writer);
String renderAsBibtex(@PaperId paperId);

// computation operations (stateless):
String convertToBibtex(@PublicationEntryDTO entry);

This single publication management endpoint can be separated

into two in this API design:

Service PublicationManagementCommandFacade {
// a state creation/state transition operation:
@PaperId add(@PublicationEntryDTO newEntry);

// computation operations (stateless):
String convertToBibtex(@PublicationEntryDTO entry);

}

Service PublicationManagementQueryFacade {
// retrieval operations:
@PublicationArchive dumpPublicationArchive();
Set<@PublicationEntryDTO>

lookupPublicationsFromAuthor(String writer);
String renderAsBibtex(@PaperId paperId);

}

This API design achieves command-query segregation at the

expense of distributing the two operations related to BibTeX to two

different endpoints. Consequently, the two endpoints are coupled

from a domain design standpoint (to some extent).

3.7.8 Hints and Pitfalls to Avoid. When deciding to separate com-

mands from queries by introducing the CQRS pattern:

• Replicate data as needed. Decide between strict and eventual

consistency consciously.

7
unlike State Creation Operation, Retrieval Operation, and State Transition

Operation

• Be aware of the implications of the Backup Availability Con-
sistency (BAC) theorem [25]. The BAC theorem states that it

is not possible to backup and restore across services consis-

tently without degrading availability.

• Acknowledge that read models and event messages sent as

Data Transfer Objects (DTOs) over APIs increase the data

coupling between clients and providers. If multiple clients

use the same DTOs, they might indirectly also be coupled

consequently.
8

• Consider asynchronous, queue-based messaging to update

the read model after a change to the write/command model

caused by an API command or a backend activity. This in-

tegration style supports throttling and is able to guarantee

message delivery (depending on the quality-of-service prop-

erties chosen for a particular queue).

• Consider applying Event Sourcing as one of several options

when segregating commands from queries. An event source

stores a series of state changes in chronological order but

does not store the resulting final/current state. In such de-

signs, it often makes sense to take snapshots of the current

state periodically or upon client request; such snapshots can

then be stored separately from the events and provided to

clients via additional calls to API operations.

3.7.9 Related Content. This pattern refines Extract Endpoint in the

context of CQRS. Hence, Merge Endpoints reverts it. Introduce Pagi-
nation and Add Wish List might be alternative options to improve

query performance. The Introduce Data Transfer Object refactoring
explains DTO usage.

Information Holder Resources of various types are related

patterns that may benefit from command-query segregation. In

“Patterns for API Design” [48], queries are represented as Retrieval

Operations; commands are State Creation Operations or State

Transition Operations.

Michael Ploed provides a comprehensive introduction to CQRS

and event sourcing on slideshare. A presentation video by Michael

Ploed is available as well. Also see an online article by Udi Dahan for

examples and a discussion of pros and cons. The Context Mapper

website provides a tutorial, “Event Sourcing and CQRS Modeling

in Context Mapper.”

3.8 Refactoring: Introduce Version Mediator

also known as: Add Compatibility Gateway, Add Tolerant Proxy,

Support Virtual Version

3.8.1 Context and Motivation. An API runs in production. One

of its supported versions will be retired soon, but existing clients

still use it. One or more breaking changes have been introduced in

subsequent, active versions.
9

8
This cannot be avoided entirely in any Published Language [6] in an API; the coupling

still exists but becomes less obvious when commands and queries are separated (as they

still work on the same domain concepts). If the two endpoints evolve autonomously

(independently of each other, that is), the models will eventually deviate further and

further (which to some extent is desired). Over time, this may cause technical debt

and hidden dependencies that counter the original motivation of the pattern and the

refactoring. If this happens, the inverse Merge Endpoints refactoring may be applied.

9
which should, but cannot always be avoided; sometimes, it is better to break an

existing client and cause work for its developers/maintainers rather than pretending

that nothing has changed and letting some hard-to-catch bugs creep in

https://microservices.io/patterns/service-registry.html
https://contextmapper.org/docs/language-reference/
https://en.wikipedia.org/wiki/BibTeX
https://www.cloudcomputingpatterns.org/strict_consistency/
https://www.cloudcomputingpatterns.org/eventual_consistency/
https://martinfowler.com/eaaDev/EventSourcing.html
https://interface-refactoring.github.io/refactorings/extractendpoint
https://interface-refactoring.github.io/refactorings/mergeendpoints
https://de.slideshare.net/mploed/event-sourcing-introduction-challenges
https://www.youtube.com/watch?v=A0goyZ9F4bg
https://www.youtube.com/watch?v=A0goyZ9F4bg
https://udidahan.com/2009/12/09/clarified-cqrs/
https://contextmapper.org/docs/event-sourcing-and-cqrs-modeling/
https://contextmapper.org/docs/event-sourcing-and-cqrs-modeling/
https://interface-refactoring.github.io/refactorings/mergeendpoints

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Processing
Resource

API Client API Provider

create

update

Information
Holder

Resource

Command Model
API

Read Model
API

Repository

Distributed?

delete

read

Client

Figure 15: Segregate Commands from Queries: Target Solution Sketch. Commands and Queries in Separate Endpoints

As an API client, I want to continue to call a deprecated
API for some time, and I expect the provider to support
me with a temporary solution for doing so. The behavior
of this solution should be identical to those of the API
that I have been using so far.

We will call the API version that will go out of service the “old”

API and its successor “new” API.

3.8.2 Stakeholder Concerns (includingQuality Attributes and Design
Forces).

#flexibility and #evolvability To evolve an API, providers

must have the flexibility to refactor, redesign, and adapt

an API over time. Ideally, this happens without breaking

compatibility, but this is not always realistic.

#developer-experience Breaking changes in APIs and pres-

sure to upgrade may frustrate client developers, especially if

they must migrate to a newer version on short notice. For

instance, cloud application developers sometimes have to

react rather quickly to changes introduced by their public

providers.

#maintainability Fewer components and/or code paths that

handle deprecated behavior make an API and its implemen-

tation easier to maintain for the provider.

See “Interface Evolution Patterns — Balancing Compatibility and

Extensibility across Service Life Cycles” [22] for a general discussion

of desired qualities, their conflicts, and related trade-offs.

3.8.3 Initial Position Sketch. This architectural refactoring affects
the following API elements:

• An endpoint and at least one of its operations (with their

roles and responsibilities)

• Representation elements in request and responsemessages of

these operationswith their names, roles, and types (including

information about value ranges, optionality, and cardinality)

• API clients and the remote communication proxies they use

See Figure 16 for a visualization of the initial position.

3.8.4 Design Smells.

Evolution strategy does not meet client expectations The

API provider has decided to commit a short lifetime of an

API version only, or has announced to retire one or more

active versions soon. This has caused a negative reaction in

the API client community (the related refactorings Tighten
Evolution Strategy and Relax Evolution Strategy explain this

smell further).

Resistance to change caused by uncertainty One or more

breaking change of the API have happened, or the lifetime

guarantee has been softened.
10

However, clients are unwill-

ing or unable to migrate to the latest version immediately.

They might fear the effort and risk of the migration or they

might lack confidence and trust in the new version.

Large and/or partially unknown user base API providers

are not in control of their users and lack information about

them. The less information and control a provider has, the

higher the risk of impacting clients negatively (or losing

them) when making breaking changes in upgrades.

3.8.5 Instructions (Steps). Add a new endpoint to the API for the

“new” API version. Derive its contract from the “old” one and adjust

the “old” endpoint to mediate “old” operations and their represen-

tation elements to “new” ones with mapping rules.

When establishing the mapping rules for the operations whose

“old” and “new” versions are incompatible, start with the request

messages:

1. Identify and mark the fields that remain unchanged and do

not require a mapping.

2. Define a mapping rule for fields that are renamed only and

can be mapped one-to-one (pass-through).

3. Find the fields that change their type, and define a mapping

rule to implement the type change:

• If a previously optional field becomes mandatory, define

a mapping rule that leverages a Content Enricher a.k.a.

Data Enricher to define a default value (filler). No mapping

10
while this should generally be avoided, this is not always possible; the provider

might have good reasons to do it

https://interface-refactoring.github.io/refactorings/tightenevolutionstrategy
https://interface-refactoring.github.io/refactorings/tightenevolutionstrategy
https://interface-refactoring.github.io/refactorings/relaxevolutionstrategy
https://www.enterpriseintegrationpatterns.com/patterns/messaging/DataEnricher.html

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

Client
Application
(and Proxy)

Endpoint

API Client API Provider

v1

Data Element

Version
Identifier

Figure 16: Introduce Version Mediator: Initial Position Sketch. Client communicates with Version 1 of an API Endpoint

action is required for the opposite case (mandatory fields

becoming optional).

• Mark the fields that change cardinality, for instance from
atomic to list/set (and vice versa).

• Do the same for other basic type changes, such as from

numeric to strings.

4. Find the fields that are added in the new version. Add a Con-

tent Enricher to support “old” clients. Define a default value

or make the newcomer optional (to preserve compatibility).

5. Mark the fields that disappear in the new version. Add a

Content Filter to mediate requests from “old” clients (and

log the fact that some data is no longer processed, having

double-checked that this makes sense).

6. Find places where two (ormore) “old” fieldsmap to one “new”

field. For each such place, define a mapping rule realizing an

Aggregation strategy. Define a Splitter rule for the opposite

case, one “old” field mapping to two or more “new” fields.

These two cases can also occur in combination (which actu-

ally can be seen as the default/catch case); a Scatter-Gather

rule can handle them.

Continue with the response messages and define similar rules

for them, including error cases. If a representation element in a

response used to be a single Atomic Parameter but now is set-

or list-valued, a Content Filter can select a single element to re-

turn. However, the “old” client and the mediator might suffer from

information loss through this filtering. Additional patterns such

as Context Representation might be able to provide additional

(meta-)information in such situations.
11

Include any custom request and response headers in the mapping

for requests and responses.

Secure the mediator endpoint exactly as the updated main end-

point.

3.8.6 Target Solution Sketch (Evolution Outline). A rule-based Com-

patibility Mediator implements the compatibility mappings, either

as plain code or declaratively, and acts as a gateway between “old”

clients and the “new” provider. Figure 17 shows this solution.

The mediator should be a transitional, interim solution preserv-

ing a good client developer experience and giving clients more time

to adopt the “new” API.

3.8.7 Example(s). The fictitious insurance firm Lakeside Mutual

could expose the following Customer Core microservice (notation:

11
Such cases should be avoided if at all possible, for instance, by providing the “old”

and the “new” version of the operation in parallel in the “new” API.

MDSL):

API description LakesideMutual version "v1.0.0"

data type CustomerDTO1 {"name":D<string>}

endpoint type CustomerCoreOriginalContract
exposes

operation createCustomerMasterData
expecting payload "customerData": CustomerDTO1
delivering payload "customerId": ID<int>

operation readCustomerMasterData
expecting payload "customerId": ID<int>
delivering payload "customerData": CustomerDTO1

API provider LakesideMutualAPI
offers CustomerCoreOriginalContract
at endpoint location "http://some.original.address"
via protocol HTTP binding resource Home

API client CustomerRelationshipManagementApplication
consumes CustomerCoreOriginalContract
via protocol HTTP

Lakeside Mutual could then update its Customer Core interface

(for instance, after a merger with another company):

API description LakesideMutual version "v2.0.0"

data type CustomerDTO1 {
"name":D<string>, "zipString":D<string>,
"toBeSunset":MD<bool>}

data type CustomerDTO2 {
"firstName":D<string>, "lastName":D<string>,
"zipCode": D<int>, "newKey":ID<int>}

// not featuring all deviations here (as defined
// in Steps 1 to 6 in "Instructions")

endpoint type CustomerCoreRevisedContract
exposes

operation createCustomerMasterData
expecting payload "customerData": CustomerDTO2
delivering payload "customerId": ID<int>

operation readCustomerMasterData
expecting payload "customerId": ID<int>
delivering payload "customerData": CustomerDTO2

API client CustomerRelationshipManagementApplication

https://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentFilter.html
https://www.enterpriseintegrationpatterns.com/Aggregator.html
https://www.enterpriseintegrationpatterns.com/Sequencer.html
https://www.enterpriseintegrationpatterns.com/BroadcastAggregate.html

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Client
Application
(and Proxy)

Endpoint

API Client API Provider

Endpoint
Compatibility

Mediator

Mapping
Rules Test Data

v1 v2

Version Identifier Data Element

Figure 17: Introduce Version Mediator: Target Solution Sketch. Client communication is mapped to a new endpoint via a

Compatibility Mediator.

// will no longer work:
consumes CustomerCoreOriginalContract
via protocol HTTP

Support for the “old” contract can be modeled as a mediation

gateway in MDSL (which does not imply that a visible API gateway

is deployed; the mediation can happen in the background):

API gateway Version1ToVersion2Mediator
offers CustomerCoreOriginalContract
at endpoint location "http://some.new.address"
via protocol HTTP binding resource Home

consumes CustomerCoreRevisedContract
from LakesideMutualAPI
via protocol HTTP

mediates from CustomerDTO1 to CustomerDTO2
element zipString to zipCode
// not featuring element-level mapping rules here

3.8.8 Hints and Pitfalls to Avoid. The user story and the smells

motivating this refactoring mention scenarios in which it may be

applied; it is also important to know when not to use a particular

design.

To decide when not to apply this refactoring, analyze whether

the roles of an endpoint, responsibilities of an operation, and/or

semantics of a Data Element change. Such changes require more

than a rule-based mediator; in such situations, this refactoring is

less suited.

As a general rule for any communication party (API client and

provider), apply Postel’s Law and be liberal when consuming mes-

sages and conservative when producing them.

Having decided to apply this refactoring, make sure to:

• Catch and handle mapping errors, both at specification time

and at runtime.

• Test all combinations of the “old” versus “new” clients and

provider that appear in the refactored system landscape; up

to four (two times two) cases might occur. Add test data

for all steps/situations from the step descriptions further

up that may occur. Include mapping errors in the tests (for

instance, set-valued responses that the introduced Content

Filters realizing the Version Mediator are not prepared to

process).

• Monitor the performance of the Compatibility Mediator (in

particular, when it is realized as a mapping rule engine)

and end-to-end latency (as the number of request/response

messages is doubled).

• Do not prolong the lifetime of the intermediary/the tempo-

rary mediation endpoint; for instance, do not place a second

gateway in front of the gateway to cope with a future change

of a different kind.

A domain-specific language, either embedded in a general-

purpose language or explicit, might be an appropriate choice for

expressing the mapping rules. Many application integration tools

provide such languages (often proprietary). MDSL is a technology-

independent contract language that supports mediation rules.

An API Gateway may play the role of a Version Mediator. An

example of such gateway usage can be found in the blog post “8

Common API Gateway Request Transformation Policies”. LinkedIn

also uses an API Gateway in their new Marketing APIs that support

request mapping to mediate between API versions.

3.8.9 Related Content. An application of Tighten Evolution Strategy
may trigger this refactoring. And Introduce Version Identifier might

have to be applied before this one so that clients can learn about

versions and their (in-)compatibilities.

The Enterprise Integration Patterns category Message Transfor-

mation provides partial solutions; the patterns Content Enricher

and Content Filter are used to realize the Compatibility Mediator

(which effectively is a special-purpose Content-Based Router).

For an example of Enterprise Service Bus product capabilities

and integration services, refer to Scenario 4/Figure 7 in “Enterprise

Service Bus” by Jürgen Kress et al. This technical article, available

on a vendor site, positions the pattern, presents usage scenarios,

and suggests selection criteria.

In object-oriented programming, the Adapter design pattern [13]

provides a different view on the interface of a class so that it can be

used by clients that cannot work with the original interface easily.

https://en.wikipedia.org/wiki/Robustness_principle
https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservices.io/patterns/apigateway.html
https://konghq.com/blog/api-gateway-request-transformation/
https://konghq.com/blog/api-gateway-request-transformation/
https://engineering.linkedin.com/blog/2022/-under-the-hood--how-we-built-api-versioning-for-linkedin-market
https://interface-refactoring.github.io/refactorings/tightenevolutionstrategy
https://interface-refactoring.github.io/refactorings/introduceversionidentifier
https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageTransformationIntro.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageTransformationIntro.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
https://www.oracle.com/technical-resources/articles/middleware/soa-ind-soa-esb.html
https://www.oracle.com/technical-resources/articles/middleware/soa-ind-soa-esb.html

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

Note that there is also a Mediator pattern, whose goal is different
(decouple objects from each other).

Also related are:

• Data mapping and Enterprise Application Integration (EAI)

tools such as Apache Camel, possibly complemented with a

datamapper such as Nomin as featured in “An integration job

engine for Apache Camel” as well as expression languages

such as the Spring Expression Language (SPeL) or XPath and

its JSON pendants

• An API Versioning/Evolution DSL described in “Continu-

ous API Evolution in Heterogeneous Enterprise Software

Systems” [20]

• Extract-Transform-Load (ETL) tools in the Data Warehouse

and Information Management communities

Smart proxies in service middleware operating on change-aware

contracts are emerging [20].

4 REFACTORING EXECUTION AND TOOL

SUPPORT

In this section, we discuss how to apply the refactorings from our

catalog and how to find suited ones. Tool support is available, also

demonstrating their validity.

4.1 For Any Refactoring: Test, Explain, Let

Know and Learn (TELL)

When refactoring the API boundaries of a system, no matter

whether these are local or remote APIs, the clients of the API must

also be considered. Most API refactorings are not finished once the

API definition or implementation is adjusted; operations or param-

eters may need to be deprecated rather than removed immediately.

We propose a Test, Explain, Let Know, and Learn (TELL) approach

to all API refactoring. Having applied a refactoring, always apply

the four TELL steps:

• Test the updates locally and end-to-end to ensure the API

works as expected. Do not just consider functional tests

but also non-functional ones, such as performance tests, to

ensure that the refactoring did not introduce a performance

regression.

• Explain the new design in an Architectural Decision Record

(ADR)
12

and have it reviewed as needed. Adjust the API de-

scription (including Version Identifier) accordingly. Make

sure that your conceptual, platform-independent design, its

technology- and platform-specific refinement, the imple-

mentation, the tests, and the documentation of all of these

artifacts stay current and consistent.

• Let API clients and other stakeholders know about the

change (even if a change might be syntactically and seman-

tically backward-compatible, the refactored API might offer

qualitatively different features now, for example, a Wish

List that clients could use to optimize their conversations).

Decide whether the API version that has been refactored

should continue to be supported for some time. One or more

12
To learn more about creating ADRs, we recommend the following arti-

cle: https://medium.com/olzzio/how-to-create-architectural-decision-records-adrs-

and-how-not-to-93b5b4b33080

lifecycle management strategies can be applied, for instance,

Version Identifier or Two in Production evolution pat-

terns.

• Learn about the effectiveness of the refactoring (as well as

potentially negative side effects) with logging and other

observation instruments.

The TELL steps help to ensure that the refactoring improves

the API quality and that the API clients are informed about the

changes and can evolve without disruption. See Chapters 3 and 8 of

“Patterns for API Design” [48] for more information about options,

criteria, and consequences of applying different evolution patterns.

The refactorings also outline possible evolutions: e.g., the section

“Hints and Pitfalls to Avoid” contains related hints.

4.2 Catalog Navigation

The IRC Website offers two tools that help developers discover ap-

plicable refactorings: a Smell Browser (Figure 18) and a Stakeholder

Concerns View (Figure 19) to enter the catalog.

4.3 IDE Extensions and MDSL Web Tool

Automated refactoring tools that are part of integrated development

tools (IDEs) are commonly used by developers to quickly and safely

refactor program code, ensuring that software remains maintain-

able and well-structured. Originating in the Smalltalk Refactoring

Browser [28], automated refactoring tools have been adopted by all

major IDEs and for various programming languages, both dynam-

ically typed ones (e.g., Ruby [4]) as well as statically typed ones

(e.g., Scala [34]).

The MDSL Tools implement many/most of the refactorings in

our catalog as quick fixes, including those presented in this paper.

See the documentation on “Transformations Related to Patterns

and Refactorings” and the blog post “Refactorings implemented in

MDSL Tools” for details.

The refactorings are also available through MDSL Web Tool, pro-
vided as an open source Web application implemented in JavaScript

(frontend) and Java (backend, using Spring Boot). Both IDE and

Web versions of the MDSL tools are able to transform API specifica-

tions written in MDSL and generate Open API and other interface

descriptions from them (see Figure 20).

5 SUMMARY

We motivated the need for API refactoring and introduced 22 in-

terface refactorings collected so far. We presented eight of these

refactorings in this paper (Introduce Data Transfer Object, Add Wish
List, Introduce Pagination, Split Operation, Merge Operations, Re-
name Representation Element, Segregate Commands from Queries,
Introduce Version Mediator). To do so, we used a common template

(see Appendix B). We also discussed emerging tool support and

refactoring usage, supported by four TELL principles: Test, Explain,

Let Know and Learn.

Future work concerns more details on existing refactorings and

documenting additional ones. We plan to mine software reposito-

ries for refactoring applications and to validate the refactorings in

practice. Such future research will help us answer questions such

as which refactorings are most frequently applied, which refactor-

ings are applied together, and what are typical API design patterns

https://github.com/dobrynya/nomin
https://github.com/gysel/camel-jobs
https://github.com/gysel/camel-jobs
https://www.baeldung.com/spring-expression-language
https://medium.com/olzzio/how-to-create-architectural-decision-records-adrs-and-how-not-to-93b5b4b33080
https://medium.com/olzzio/how-to-create-architectural-decision-records-adrs-and-how-not-to-93b5b4b33080
https://interface-refactoring.github.io/refactorings/by-smells-drivers/
https://interface-refactoring.github.io/refactorings/by-stakeholder-concerns/
https://interface-refactoring.github.io/refactorings/by-stakeholder-concerns/
https://microservice-api-patterns.github.io/MDSL-Specification/tools.html
https://microservice-api-patterns.github.io/MDSL-Specification/soad#transformations-related-to-patterns-and-refactorings
https://microservice-api-patterns.github.io/MDSL-Specification/soad#transformations-related-to-patterns-and-refactorings
https://interface-refactoring.github.io/news/refactorings-implemented-in-mdsl/
https://interface-refactoring.github.io/news/refactorings-implemented-in-mdsl/

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Figure 18: Catalog Navigation 1: Refactorings by Smells

Figure 19: Catalog Navigation 2: Refactorings by Stakeholder Concerns

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

Figure 20: Screenshot of MDSL Web Tool

that developers refactored to or even away from in case of pattern

alternatives such as Embedded Entity and Linked Information

Holder. Our knowledge engineering backlog comprises candidate

refactorings such as Split Application Frontend and Split Applica-

tion Backend.

Finally, a promising direction for future work is to combine ar-

chitectural refactoring with green software engineering. Additional

information in refactoring catalogs and tools may make software

applications and their developers more aware of the direct and

indirect resource consumption of current and future application

deployments. The impact of changes on the resource consumption

can then be taken into account when making architectural deci-

sions that aim at improving the carbon footprint of the application

and its deployments.

ACKNOWLEDGMENTS

We would like to thank the contributors to the interface refactor-

ing catalog. We also want to thank the participants of the Euro-

PLoP 2023Writers’ Workshop Carlos Albuquerque, Filipe F. Correia,

Daniel Lübke, Cesare Pautasso, Souhaila Serbout, and Uwe Zdun

for their valuable feedback. Andrei Furda has reviewed drafts of

selected refactorings. A grant from the Hasler Foundation partially

supported the research presented in this paper.

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

REFERENCES

[1] Subbu Allamaraju. 2010. RESTful Web Services Cookbook. O’Reilly.
[2] Scott W. Ambler and Pramodkumar J. Sadalage. 2006. Refactoring Databases:

Evolutionary Database Design. Addison-Wesley.

[3] Tom Benner. 2023. Naming Things: The Hardest Problem in Software Engineering.
Independently published.

[4] Thomas Corbat, Lukas Felber, and Mirko Stocker. 2007. Refactoring support for

the ruby development tools.. In Software Engineering (Workshops) (LNI, Vol. P-
106), Wolf-Gideon Bleek, Henning Schwentner, and Heinz Züllighoven (Eds.). GI,

313–315. http://dblp.uni-trier.de/db/conf/se/se2007w.html#CorbatFS07

[5] Trevor Foucher Dustin Boswell. 2011. The Art of Readable Code. O’Reilly Media,

Inc.

[6] Eric Evans. 2003. Domain-Driven Design: Tacking Complexity In the Heart of
Software. Addison-Wesley.

[7] G. Fairbanks. 2010. Just Enough Software Architecture: A Risk-driven Approach.
Marshall & Brainerd.

[8] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter

Arbitter. 2014. Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer. https://doi.org/10.1007/978-3-7091-1568-8

[9] Roy T. Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content. RFC 7231. https://doi.org/10.17487/RFC7231

[10] International Organization for Standardization, International Electrotechni-

cal Commission, Institute of Electrical, and Electronics Engineers. [n. d.].

ISO/IEC/IEEE 24765: 2017(E): ISO/IEC/IEEE International Standard - Systems and
Software Engineering–Vocabulary. IEEE.

[11] Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[12] Martin Fowler. 2018. Refactoring (2 ed.). Addison-Wesley, Boston, MA.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley.

[14] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. 2016.

Service Cutter: A Systematic Approach to Service Decomposition. In Service-
Oriented and Cloud Computing - 5th IFIP WG 2.14 European Conference, ESOCC
2016, Vienna, Austria, September 5-7, 2016, Proceedings (Lecture Notes in Computer
Science, Vol. 9846), Marco Aiello, Einar Broch Johnsen, Schahram Dustdar, and

Ilche Georgievski (Eds.). Springer, 185–200. https://link.springer.com/chapter/

10.1007/978-3-319-44482-6_12

[15] Neil B. Harrison. 2003. Advanced Pattern Writing Patterns for Experienced

Pattern Authors. In Proc. Eighth European Conference on Pattern Languages of
Programs (EuroPLoP). 1–20.

[16] F. Hermans. 2021. The Programmer’s Brain: What every programmer needs to
know about cognition. Manning.

[17] Gregor Hohpe, Ipek Ozkaya, Uwe Zdun, and Olaf Zimmermann. 2016. The

Software Architect’s Role in the Digital Age. IEEE Software 33, 6 (2016), 30–39.
https://doi.org/10.1109/MS.2016.137

[18] Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley.

[19] Joshua Kerievsky. 2004. Refactoring to Patterns. Pearson Higher Education.

[20] Holger Knoche and Wilhelm Hasselbring. 2021. Continuous API Evolution in

Heterogenous Enterprise Software Systems. In 18th IEEE International Conference
on Software Architecture, ICSA 2021, Stuttgart, Germany, March 22-26, 2021. IEEE,
58–68. https://doi.org/10.1109/ICSA51549.2021.00014

[21] Arnaud Lauret. 2019. The Design of Web APIs. Manning.

[22] Daniel Lübke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun, and Mirko Stocker.

2019. Interface Evolution Patterns: Balancing Compatibility and Extensibility

across Service Life Cycles. In Proceedings of the 24th European Conference on
Pattern Languages of Programs (Irsee, Germany) (EuroPLop ’19). Association
for Computing Machinery, New York, NY, USA, Article 15, 24 pages. https:

//doi.org/10.1145/3361149.3361164

[23] Gerard Meszaros and Jim Doble. 1997. A Pattern Language for Pattern Writing.

Pattern Languages of Program Design 3 (1997), 529–574.

[24] Bertrand Meyer. 1997. Object-Oriented Software Construction (2nd Ed.). Prentice-
Hall, Inc., USA.

[25] Guy Pardon, Cesare Pautasso, and Olaf Zimmermann. 2018. Consistent Disaster

Recovery for Microservices: the BAC Theorem. IEEE Cloud Computing 5, 1 (12

2018), 49–59. https://doi.org/10.1109/MCC.2018.011791714

[26] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into

Modules. Commun. ACM 15, 12 (dec 1972), 1053–1058. https://doi.org/10.1145/

361598.361623

[27] Chris Richardson. 2018. Microservices Patterns. Manning.

[28] Don Roberts, John Brant, and Ralph E. Johnson. 1997. A Refactoring Tool for

Smalltalk. Theory Pract. Object Syst. 3 (1997), 253–263.
[29] Mahsa H. Sadi and Eric Yu. 2023. WEBAPIK: a body of structured knowledge on

designing web APIs. Requirements Engineering (2023). https://doi.org/10.1007/

s00766-023-00401-2

[30] Souhaila Serbout, Cesare Pautasso, Uwe Zdun, and Olaf Zimmermann. 2022.

From OpenAPI Fragments to API Pattern Primitives and Design Smells. In 26th

European Conference on Pattern Languages of Programs (Graz, Austria) (Euro-
PLoP’21). Association for Computing Machinery, New York, NY, USA, Article 21,

35 pages. https://doi.org/10.1145/3489449.3489998

[31] Apitchaka Singjai, Uwe Zdun, and Olaf Zimmermann. 2021. Practitioner Views

on the Interrelation of Microservice APIs and Domain-Driven Design: A Grey

Literature Study Based on Grounded Theory. In 18th IEEE International Conference
On Software Architecture (ICSA 2021). https://doi.org/10.5281/zenodo.4493865

[32] Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare

Pautasso. 2021. Patterns on Deriving APIs and their Endpoints from Domain

Models. In 28th Conference on Pattern Languages of Programs (PLoP’21). ACM,

ACM, Virtual.

[33] Michael Stal. 2013. Agile Software Architecture (Chapter 3 in "Aligning Agile
Processes and Software Architectures"). Morgan Kaufmann. https://doi.org/10.

1016/B978-0-12-407772-0.00003-4

[34] Mirko Stocker. 2010. Scala Refactoring. Master’s thesis. HSR Hochschule für

Technik Rapperswil, http://eprints.ost.ch/id/eprint/286.

[35] Mirko Stocker and Olaf Zimmermann. 2021. From Code Refactoring to API

Refactoring: Agile Service Design and Evolution. In Service-Oriented Computing,
Johanna Barzen (Ed.). Springer International Publishing, Cham, 174–193.

[36] Mirko Stocker, Olaf Zimmermann, Daniel Lübke, Uwe Zdun, and Cesare Pautasso.

2018. Interface Quality Patterns – Communicating and Improving the Quality

of Microservices APIs. In 23rd European Conference on Pattern Languages of
Programs 2018. https://doi.org/10.1145/3282308.3282319

[37] Jeffrey Stylos, Benjamin Graf, Daniela K. Busse, Carsten Ziegler, Ralf Ehret,

and Jan Karstens. 2008. A Case Study of API Redesign for Improved Usability.

https://doi.org/10.1109/VLHCC.2008.4639083

[38] Jeffrey Stylos and Brad Myers. 2007. Mapping the Space of API Design Decisions.

50–60. https://doi.org/10.1109/VLHCC.2007.44

[39] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. 2014. Refac-
toring for Software Design Smells: Managing Technical Debt (1st ed.). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

[40] Joseph W. Yoder and Paulo Merson. 2022. Strangler Patterns. In Proceedings of
the 27th Conference on Pattern Languages of Programs (Virtual Event) (PLoP ’20).
The Hillside Group, USA, Article 8, 25 pages.

[41] Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke.

2018. Guiding Architectural Decision Making on Quality Aspects in Microservice

APIs. In Service-Oriented Computing, Claus Pahl, Maja Vukovic, Jianwei Yin, and

Qi Yu (Eds.). Springer International Publishing, Cham, 73–89.

[42] Olaf Zimmermann. 2015. Architectural Refactoring: A Task-Centric View on

Software Evolution. IEEE Software 32, 2 (2015), 26–29. https://doi.org/10.1109/

MS.2015.37

[43] Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker.

2020. Interface Responsibility Patterns: Processing Resources and Operation

Responsibilities. In Proc. of the European Conference on Pattern Languages of
Programs (Online) (EuroPLoP ’20).

[44] Olaf Zimmermann, Daniel Pautasso, Cesare Lübke, Uwe Zdun, , and Mirko

Stocker. 2020. Data-Oriented Interface Responsibility Patterns: Types of Informa-

tion Holder Resources. In Proc. of the European Conference on Pattern Languages
of Programs (Online) (EuroPLoP ’20).

[45] Olaf Zimmermann andMirko Stocker. 2021. Design Practice Reference - Guides and
Templates to Craft Quality Software in Style. LeanPub. https://leanpub.com/dpr

[46] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun.

2020. Introduction to Microservice API Patterns (MAP). In Joint Post-proceedings
of the First and Second International Conference on Microservices (Microservices
2017/2019) (OpenAccess Series in Informatics (OASIcs), Vol. 78), Luís Cruz-Filipe,
Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher,

and Sabine Sachweh (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 4:1–4:17. https://doi.org/10.4230/OASIcs.Microservices.

2017-2019.4

[47] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. 2017. Interface

Representation Patterns - Crafting and Consuming Message-Based Remote APIs.

In 22nd European Conference on Pattern Languages of Programs (EuroPLoP 2017).
1–36. https://doi.org/10.1145/3147704.3147734

[48] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Uwe Zdun, and Cesare Pautasso.

2022. Patterns for API Design: Simplifying Integration with Loosely CoupledMessage
Exchanges. Addison-Wesley Professional.

A API PATTERNS OVERVIEW

The following patterns from Zimmermann et al. [48] are used in this

paper. The problem and solutions are reproduced here for reference,

the API Patterns website and book have more details.

http://dblp.uni-trier.de/db/conf/se/se2007w.html#CorbatFS07
https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.17487/RFC7231
https://link.springer.com/chapter/10.1007/978-3-319-44482-6_12
https://link.springer.com/chapter/10.1007/978-3-319-44482-6_12
https://doi.org/10.1109/MS.2016.137
https://doi.org/10.1109/ICSA51549.2021.00014
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1109/MCC.2018.011791714
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.1007/s00766-023-00401-2
https://doi.org/10.1007/s00766-023-00401-2
https://doi.org/10.1145/3489449.3489998
https://doi.org/10.5281/zenodo.4493865
https://doi.org/10.1016/B978-0-12-407772-0.00003-4
https://doi.org/10.1016/B978-0-12-407772-0.00003-4
http://eprints.ost.ch/id/eprint/286
https://doi.org/10.1145/3282308.3282319
https://doi.org/10.1109/VLHCC.2008.4639083
https://doi.org/10.1109/VLHCC.2007.44
https://doi.org/10.1109/MS.2015.37
https://doi.org/10.1109/MS.2015.37
https://leanpub.com/dpr
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.1145/3147704.3147734
https://api-patterns.org

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

Pattern Name Pattern Summary (Problem and Solution)

API Description Problem: Which knowledge should be shared between an API provider and its clients? How should this

knowledge be documented?

Solution: Create an API Description that defines request and response message structures, error reporting,

and other relevant parts of the technical knowledge to be shared between provider and client. In addition to

static and structural information, also cover dynamic or behavioral aspects, including invocation sequences,

pre- and postconditions, and invariants. Complement the syntactical interface description with quality

management policies as well as semantic specifications and organizational information.

Atomic Parameter Problem: How can simple, unstructured data (such as a number, a string, a Boolean value, or a block of binary

data) be exchanged between API client and API provider?

Solution: Define a single parameter or body element. Pick a basic type from the type system of the chosen

message exchange format for it. If justified by receiver-side usage, identify this Atomic Parameter with a

name. Document name (if present), type, cardinality, and optionality in the API Description.

Computation

Function

?

Problem: How can a client invoke side-effect-free remote processing on the provider side to have a result

calculated from its input?

Solution: Introduce an API operation cfwith cf: in -> out to the API endpoint, which often is a Processing
Resource. Let this Computation Function validate the received request message, perform the desired

function cf, and return its result in the response.

Context

Representation

Problem: How can API consumers and providers exchange context information without relying on any

particular remoting protocols? How can identity information and quality properties in a request be made

visible to related subsequent ones in conversations?

Solution: Combine and group all Metadata Elements that carry the desired information into a custom

representation element in request and/or response messages. Do not transport this single Context Repre-

sentation in protocol headers, but place it in the message payload. Separate global from local context in a

conversation by structuring the Context Representation accordingly. Position and mark the consolidated

Context Representation element so that it is easy to find and distinguish from other Data Elements.

Data Element Problem: How can domain/application-level information be exchanged between API clients and API providers

without exposing provider-internal data definitions in the API? How can API client and API provider be

decoupled from a data management point of view?

Solution: Define a dedicated vocabulary of Data Elements for request and response messages that wraps

and/or maps the relevant parts of the data in the business logic of an API implementation.

Embedded Entity Problem: How can one avoid sending multiple messages when their receivers require insights about multiple

related information elements?

Solution: For any data relationship that the client wants to follow, embed a Data Element in the request or

response message that contains the data of the target end of the relationship. Place this Embedded Entity

inside the representation of the source of the relationship.

Id Element Problem: How can API elements be distinguished from each other at design time and at runtime? When

applying domain-driven design, how can elements of the Published Language be identified?

Solution: Introduce a special type of Data Element, a unique Id Element, to identify API endpoints,

operations, and message representation elements that have to be distinguished from each other. Use these Id

Elements consistently throughout API Description and implementation.

Information Holder

Resource

Problem: How can domain data be exposed in an API, but its implementation still be hidden? How can an

API expose data entities so that API clients can access and/or modify these entities concurrently without

compromising data integrity and quality?

Solution: Add an Information Holder Resource endpoint to the API, representing a data-oriented entity.

Expose create, read, update, delete, and search operations in this endpoint to access and manipulate this

entity. In the API implementation, coordinate calls to these operations to protect the data entity.

Link Element Problem: How can API endpoints and operations be referenced in request and response message payloads so

that they can be called remotely?

Solution: Include a special type of Id Element, a Link Element, to request or response messages. Let these

Link Elements act as human- and machine-readable, network-accessible pointers to other endpoints and

operations. Optionally, let additional Metadata Elements annotate and explain the nature of the relationship.

API Refactoring to Patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Pattern Name Pattern Summary (Problem and Solution)

Linked Information

Holder

Problem: How can messages be kept small even when an API deals with multiple information elements that

reference each other?

Solution: Add a Link Element to messages that pertain to multiple related information elements. Let this

Link Element reference another API endpoint that represents the linked element.

Metadata Element Problem: How can messages be enriched with additional information so that receivers can interpret the

message content correctly, without having to hardcode assumptions about the data semantics?

Solution: Introduce one or more Metadata Elements to explain and enhance the other representation

elements that appear in request and response messages. Populate the values of the Metadata Elements

thoroughly and consistently; process them as to steer interoperable, efficient message consumption and

processing.

Pagination Problem: How can an API provider deliver large sequences of structured data without overwhelming clients?

Solution: Divide large response data sets into manageable and easy-to-transmit chunks (also known as pages).

Send one chunk of partial results per response message, and inform the client about the total and/or remaining

number of chunks. Provide optional filtering capabilities to allow clients to request a particular selection of

results. For extra convenience, include a reference to the next chunk/page from the current one.

Processing Resource Problem: How can an API provider allow its clients to trigger an action in it?

Solution: Add a Processing Resource endpoint to the API exposing operations that bundle and wrap

application-level activities or commands.

Retrieval Operation Problem: How can information available from a remote party (the API provider, that is) be retrieved to satisfy

an information need of an end user or to allow further client-side processing?

Solution: Add a read-only operation ro: (in,S) -> out to an API endpoint, which often is an Information

Holder Resource, to request a result report that contains a machine-readable representation of the requested

information. Add search, filter, and formatting capabilities to the operation signature.

Semantic Versioning Problem: How can stakeholders compare API versions to detect immediately whether they are compatible?

Solution: Introduce a hierarchical three-number versioning scheme x.y.z, which allows API providers to

denote different levels of changes in a compound identifier. The three numbers are usually called major,

minor, and patch versions.

State Creation

Operation

A A’

Problem: How can an API provider allow its clients to report that something has happened that the provider

needs to know about, for instance, to trigger instant or later processing?

Solution: Add a State Creation Operation sco: in -> (out,S') that has a write-only nature to the API

endpoint, which may be a Processing Resource or an Information Holder Resource.

State Transition

Operation

A A’

Problem: How can a client initiate a processing action that causes the provider-side application state to

change?

Solution: Introduce an operation in an API endpoint that combines client input and current state to trigger a

provider-side state change sto: (in,S) -> (out,S'). Model the valid state transitions within the endpoint,

which may be a Processing Resource or an Information Holder Resource, and check the validity of

incoming change requests and business activity requests at runtime.

Two in Production

v2.1v1.3

Problem: How can a provider gradually update an API without breaking existing clients but also without

having to maintain a large number of API versions in production?

Solution: Deploy and support two versions of an API endpoint and its operations that provide variations

of the same functionality but do not have to be compatible with each other. Update and decommission the

versions in a rolling, overlapping fashion.

Wish List Problem: How can an API client inform the API provider at runtime about the data it is interested in?

Solution: As an API client, provide a Wish List in the request that enumerates all desired data elements of the

requested resource. As an API provider, deliver only those data elements in the response message that are

enumerated in the Wish List ("response shaping").

Wish Template Problem: How can an API client inform the API provider about nested data that it is interested in? How can

such preferences be expressed flexibly and dynamically?

Solution: Add one or more additional parameters to the request message that mirror the hierarchical structure

of the parameters in the corresponding response message. Make these parameters optional or use Boolean as

their types so that their values indicate whether or not a parameter should be included.

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Mirko Stocker and Olaf Zimmermann

B REFACTORING TEMPLATE

The template to describe the refactorings is structured as follows:

Refactoring: Name
also known as: Alternative Names

Context and Motivation. Where and under which circumstances

is this refactoring eligible? And why? Are there preconditions for

this refactoring? The motivation for the refactoring is stated as a

goal-statement in the form of a User Story [45]:

As a . . . , I want to . . . so that

Stakeholder Concerns (including Quality Attributes and Design
Forces). Which non-functional requirements and constraints are

impacted by this refactoring?

#quality-attribute This is the explanation of the quality at-

tribute.

Note that we use #hash-tags for quality attributes to discern them
from Smell Names shown below.

Initial Position Sketch. Which API parts or architectural elements

have to be changed and are targets of this refactoring (for example,

component, endpoint, or message)? Which design problems pertain

to this refactoring, and which design options are currently chosen

to resolve them?

Design Smells. Smells are “structures in the design that indicate

violations of fundamental design principles and negatively impact

design quality” [39]. This section identifies smells that indicate a

problem with an architecture or API that the refactoring may solve.

Smell Name NN This is the definition of the specific smell.

Instructions (Steps). How can the refactoring be applied and vali-

dated? Contains a series of small and simple steps to follow. More

complex steps, for instance, TELL, are described elsewhere and may

be referenced and included here.

Target Solution Sketch (Evolution Outline). Which design options

should be chosen to address the concerns and remove the smells?

What does the target solution look like? In particular, what impact

on API clients, and what can be done to mitigate it? Do variants of

the refactoring exist, e.g., one that preserves backward compatibil-

ity?

Example(s). A concrete instance of the refactoring in action, in

an API implementation (RESTful HTTP, gRPC) or at the interface

definition and specification level (MDSL, UML, OpenAPI).

Hints and Pitfalls to Avoid. Things to watch out for and consider

when applying the refactoring. When refactoring to a pattern, we

do not repeat all consequences of the pattern application but keep

the focus on the most relevant ones in the refactoring context.

Related Content. Points to reverse refactorings, (external) code-level
refactorings, etc.

This template is also applicable to other types of refactorings. Our

refactorings are licensed under the Creative Commons Attribution-

NoDerivatives 4.0 International (CC BY-ND 4.0) license. Contribu-

tions to the refactoring catalog are very welcome.

	Abstract
	1 Introduction
	2 Related Work
	3 The Interface Refactoring Catalog (First Slice)
	3.1 Refactoring: Introduce Data Transfer Object
	3.2 Refactoring: Add Wish List
	3.3 Refactoring: Introduce Pagination
	3.4 Refactoring: Split Operation
	3.5 Refactoring: Merge Operations
	3.6 Refactoring: Rename Representation Element
	3.7 Refactoring: Segregate Commands from Queries
	3.8 Refactoring: Introduce Version Mediator

	4 Refactoring Execution and Tool Support
	4.1 For Any Refactoring: Test, Explain, Let Know and Learn (TELL)
	4.2 Catalog Navigation
	4.3 IDE Extensions and MDSL Web Tool

	5 Summary
	Acknowledgments
	References
	A API Patterns Overview
	B Refactoring Template

